High Yield Conversion of Carbon Nanotubes to Nanostraws at Mild Conditions

Abstract

Several oxidants were examined for their abilities in opening carbon nanotube end caps. Up to 91% of carbon nanotubes were found to have at least one open end when treated by 0.2 M KMnCV 10% H2SO4 or 0.2 M KMnO4/0.2 M CrO3 aqueous solution at 100° C, 90 min. That is, -82% of carbon nanotubes was converted to “nanostraws”. The morphologies of the processed carbon nanotubes reflect the relative strength of these oxidants. The mechanism of carbon nanotube end cap opening processes will be discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68, 631 (1992)

    CAS  Article  Google Scholar 

  4. 3a.

    N. Hamada, S. I. Sawada, A. Oskiyama, ibid. 68, 1579 (1992)

    CAS  Article  Google Scholar 

  5. 3b.

    R. Saito, M. Fujita, G. Dresselhaus, M. S. dresselhaus, Appl. Phys. Lett 60, 2204 (1992).

    CAS  Article  Google Scholar 

  6. 4.

    P. Ball, Nature 361, 297 (1993).

    Article  Google Scholar 

  7. 5.

    P. M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    CAS  Article  Google Scholar 

  8. 6.

    S. C. Tsang, P. J. F. Harris and M. L. H. Green, Nature 362, 520 (1993).

    CAS  Article  Google Scholar 

  9. 7.

    P. M. Ajayan, T. W. Ebbesen, T. Ichiharhi, S. Iijima, K. Tanigaki and H. Hirua, Nature 362, 522 (1993).

    CAS  Article  Google Scholar 

  10. 8.

    S. Iijima, Nature 354, 56 (1991)

    CAS  Article  Google Scholar 

  11. 8a.

    S. Iijima, T. Ichihashi, Y. Ando, ibid, 356, 776 (1992).

    CAS  Article  Google Scholar 

  12. 9.

    W. A. Waters, Q. Rev. Chem. Soc 12, 277 (1958).

    CAS  Article  Google Scholar 

  13. 10.

    B. Sklarz, Q. Rev. Chem. Soc. 21, 3 (1967)

    CAS  Article  Google Scholar 

  14. 10a.

    H. Vorbrueggen and C. Djerassi, J. Am. Chem. Soc. 84, 2990 (1962)

    CAS  Article  Google Scholar 

  15. 10b.

    F. D. Gunstone and P. J. Sykes, J. Chem. Soc. 1962, 3058.

    Google Scholar 

  16. 11.

    J. R. Henry and S. M. Weinreb, J. Org. Chem. 58, 4745 (1993)

    CAS  Article  Google Scholar 

  17. 11a.

    M. Uskokovic, M. Gut, E. N. Trachtenderg, W. Klyne and R. I. Dorfman, J. Am. Chem. Soc. 82, 4965 (1960)

    CAS  Article  Google Scholar 

  18. 11b.

    M. Schroder, Chem. Rev. 80, 187 (1980).

    Article  Google Scholar 

  19. 12.

    G. Ohloff and W. Giersch, Angew. Chem. Int. Ed. Engl. 12, 401 (1973).

    Article  Google Scholar 

  20. 13.

    D. F. Tavres and J. P. Borger, Canad. J. Chem. 44, 1323 (1966)

    Article  Google Scholar 

  21. 13a.

    J. Rocek and F. H. Westheimer, J. Am. Chem. Soc. 84, 2241 (1962).

    CAS  Article  Google Scholar 

  22. 14.

    K. C. Hwang, J. Chem. Soc. Chem. Comm. (in press).

  23. 15.

    E. Dujardin, T. W. Ebbesen, H. Hiura and K. Tanigaki, Science 265, 1850 (1994).

    CAS  Article  Google Scholar 

  24. 16.

    R. C. Haddon Ace. Chem. Soc. 21, 243 (1988); Science 261, 1545 (1993).

    CAS  Article  Google Scholar 

  25. 17.

    J. M. Hawkins, A. Meyer, M. A. Solow, J. Am. Chem. Soc. 115, 7499 (1993)

    CAS  Article  Google Scholar 

  26. 17a.

    J. M. Hawkins, M. Nambu, A. Meyer, ibid. 116, 7642 (1994).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kuo Chu Hwang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, K.C. High Yield Conversion of Carbon Nanotubes to Nanostraws at Mild Conditions. MRS Online Proceedings Library 359, 75–80 (1994). https://doi.org/10.1557/PROC-359-75

Download citation