Microdielectric Measurements of Pristine and Modified Thin Fullerene (C60) Films


As developed by Senturia and co-workers [1], microdielectrometry is a technique for measuring complex permittivity utilizing microfabrication technology to incorporate both the interdigital sensing electrodes and associated circuitry on the same microchip. By covering a microdielectrometer chip with a thin layer of C60, it is possible to dynamically monitor the film’s frequency response and dielectric properties as a function of doping with selected gases and other species.

It is known that solid C60 has a substantial amount of interstitial volume. The presence of mobile ions in these spaces compromises the breakdown voltage and makes pure C60 unsuitable for applications requiring high-quality dielectric films. However, various immobile ions or neutral species (e.g. oxygen) can be made to fill the interstitial volume, changing the characteristics of the C60 films and, in some cases, improving the dielectric properties. In-situ microdielectric measurements of pristine and modified C60 films were performed for frequencies ranging from 0.005 Hz to 100 kHz. Based on the low-frequency behavior of the dielectric constant, a model is proposed for the mechanism of oxygen diffusion into the interstitial spaces of the fullerene material.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. D. Senturia and S. L. Garverick, Method and Apparatus for Microdielectrometry, U.S. Patent No. 4,423,371, Dec. 27, 1983.

    Google Scholar 

  2. [2]

    W. Krätschmer et al., Nature 347, 354 (1990).

    Article  Google Scholar 

  3. [3]

    A. F. Hebard et al., Appl. Phys. Lett. 59, 2109 (1991).

    CAS  Article  Google Scholar 

  4. [4]

    G. B. Alers et al., Science 257, 511 (1992).

    CAS  Article  Google Scholar 

  5. [5]

    S. L. Ren et al., Appl. Phys. Lett. 59, 2678 (1991).

    CAS  Article  Google Scholar 

  6. [6]

    Y. Wang et al., Phys. Rev. B 45, 14396 (1992).

    CAS  Article  Google Scholar 

  7. [7]

    A. M. Rao et al., Science 259, 955 (1993).

    CAS  Article  Google Scholar 

  8. [8]

    E. Sohmen, J. Fink, and W. Krlitschmer, Z. Phys. B 86, 87 (1992).

    CAS  Article  Google Scholar 

  9. [9]

    K. A. Wang et al., Phys. Rev. B 48, 11375 (1993).

    CAS  Article  Google Scholar 

  10. [10]

    P. C. Eklund et al., in Thin Solid Films, edited by D. M. Gruen (World Scientific Publishing Co. Ltd., Singapore, 1995).

  11. [11]

    F. Wooten, Optical Properties of Solids (Academic, New York, 1972).

    Google Scholar 

  12. [12]

    S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637 (1991).

    CAS  Article  Google Scholar 

  13. [13]

    M. K. Kelly et al., Phys. Rev. B 46, 4963 (1992).

    CAS  Article  Google Scholar 

  14. [14]

    A. Lucas et al., Phys. Rev. B 45, 13694 (1992).

    CAS  Article  Google Scholar 

  15. [15]

    I. V. Hertel et al., Phys. Rev. Lett. 68, 784 (1992).

    CAS  Article  Google Scholar 

  16. [16]

    C. S. Yannoni et al., J. Phys. Chem. 95, 9 (1991).

    CAS  Article  Google Scholar 

  17. [17]

    X. D. Shi et al., Phys. Rev. Lett. 68, 827 (1992).

    CAS  Article  Google Scholar 

  18. [18]

    A. K. Jonscher, Dielectric Relazation in Solids (Chelsea Dielectrics Press, London, 1983).

    Google Scholar 

  19. [19]

    S. D. Senturia, J. N. F. Sheppard, H. L. Lee, and D. R. Day, J. Adhesion 15, 69 (1982).

    CAS  Article  Google Scholar 

  20. [20]

    N. F. Sheppard, D. R. Day, H. L. Lee, and S. D. Senturia, Sensors and Actuators 2, 263 (1982).

    Article  Google Scholar 

  21. [21]

    S. L. Garverick and S. D. Senturia, IEEE Trans. on Electron Devices ED-29, 90 (1982).

    Article  Google Scholar 

  22. [22]

    K. Hoshimono et al., Jpn. J. of Appl. Phys. 32, L1070 (1993).

  23. [23]

    N. Minami and M. Sato, Synthetic Metals 56, 3092 (1993).

    CAS  Article  Google Scholar 

  24. [24]

    R. A. Assink et al., J. of Mater. Res. 7, 2136 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to B. Pevzner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pevzner, B., Hebard, A.F., Haddon, R.C. et al. Microdielectric Measurements of Pristine and Modified Thin Fullerene (C60) Films. MRS Online Proceedings Library 359, 423–428 (1994). https://doi.org/10.1557/PROC-359-423

Download citation