Skip to main content
Log in

Constraints on Small Fullerene Helices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A single heptagon together with a single pentagon can join two graphene semitubules together at a 30° angle so that all carbon atoms are three-fold coordinated and all other carbon rings are hexagons. This bend connects tubules of complementary classes. A tubule class is the set of all tubules having the same helicity. A tubule class has a uniform density of radii, which is the number of different tubules in the class per unit change in tubule radius. The classes that are joined by a heptagon and pentagon have smallest members whose radii differ by a factor of √3. Thus tubule segments joined by a heptagon and pentagon cannot have exactly equal circumferences. There are only a finite number of twist angles allowed between sequential bends along a tubule. Pentagons and heptagons should be isolated and separated as far as possible. These requirements particularly constrain the bends and twists that can occur in the smallest tubules. These considerations favor long-range order along a helix, given a driving force for curling during the formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley

  2. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature 347, 354 (1990).

    Article  Google Scholar 

  3. H.W. Kroto, Nature 329, 529 (1987).

    Article  CAS  Google Scholar 

  4. S. Iijima, Nature (London) 354, 56 (1991).

    Article  CAS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992).

    Article  CAS  Google Scholar 

  6. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  CAS  Google Scholar 

  7. C.T. White, D.H. Robertson, and J.W. Mintmire, Phys. Rev. B 47, 5485 (1993).

    Article  CAS  Google Scholar 

  8. B.I. Dunlap, Phys. Rev. B 46, 1933 (1992).

    Article  CAS  Google Scholar 

  9. S. Iijima, RM. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).

    Article  CAS  Google Scholar 

  10. B.I. Dunlap, Phys. Rev. B 49, 5643 (1994).

    Article  CAS  Google Scholar 

  11. B.I. Dunlap, Phys. Rev. B 50, 8134 (1994).

    Article  CAS  Google Scholar 

  12. X.B. Zhang, Z.F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Lan-druyt, V. Ivanov, J.B. Nagy, Ph. Lambin, and A.A. Lucas, Europhys. Lett. 27, 141 (1994).

    Article  CAS  Google Scholar 

  13. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, Science 265, 635 (1994).

    Article  CAS  Google Scholar 

  14. D.H. Robertson, D.W. Brenner, and J.W. Mintmire, Phys. Rev. B 45, 12592 (1992).

    Article  CAS  Google Scholar 

  15. M. Fujita, R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B, 45, 12834 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunlap, B.I. Constraints on Small Fullerene Helices. MRS Online Proceedings Library 359, 169–174 (1994). https://doi.org/10.1557/PROC-359-169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-359-169

Navigation