Micron-Size and Submicron-Size Light-Emitting Porous Silicon Structures


We have developed three classes of techniques to produce micron-size and submicron-size light emitting porous Si (LEPSi) patterns and to protect the rest of the wafer. In the 1st class, LEPSi lines down to 2 μm width have been made using a photoresist/silicon nitride trilayer mask, followed by anodization. PL mapping of the structures indicates that the protected regions have not been etched. Using electron beam lithography sub-0.5 micron porous Si lines have been generated. In the 2nd class, formation of porous Si is inhibited by amorphizing Si using ion implantation followed by anodization and annealing. The crystallinity and electrical properties of the implanted region have been fully characterized after annealing. Using focussed ion-beam implantation, LEPSi patterns of the order of 100 nm have been obtained. The 3rd class consists of enhancing the formation of porous Si by a low energy/low dose bombardment (ion-milling) with argon ions prior to anodization. Under appropriate conditions, we have observed a strong enhancement of the formation rate of LEPSi where bombardment took place, possibly due to the generation of a large number of defects on the wafer surface.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. M. Fauchet et al, SPIE Proc. 2144, 34 (1994).

    CAS  Article  Google Scholar 

  2. 2.

    J. C. Barbour et al, Appl. Phys. Lett. 59, 2088 (1991).

    CAS  Article  Google Scholar 

  3. 3.

    V. V. Doan and M. J. Sailor, Appl. Phys. Lett. 60, 619 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    J. G. Couillard and H. G. Craighead, J. Vac. Sci. and Tech. B 12, 161 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    A. J. Steckl et al, Appl. Phys. Lett. 62, 1982 (1992).

    Article  Google Scholar 

  6. 6.

    Xi-Bao Mao and Hai-Yang Qiang, Appl. Phys. Lett. 63, 2246 (1993).

    Article  Google Scholar 

  7. 7.

    Ravi; K. V. Imperfections and Impurities in Semiconductor Silicon; John Wiley & Sons, Inc.; New York; 1981; p197.

    Google Scholar 

  8. 8.

    L. Tsybeskov et al, Mat. Res. Soc. Symp. Proc. 298, 309 (1993).

    Article  Google Scholar 

  9. 9.

    Wolf and Tauber; Silicon Processing for the VLSI era Vol. 1; attice Press; Sunset Beach, California; 1986; Chps. 6,7.

    Google Scholar 

  10. 10.

    C. Peng et al, Appl. Phys. Lett. 64, 1259 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    S. P. Duttagupta et al, ‘Post-anodization implantation and CVD techniques for passivation of porous silicon’, Mat. Res. Soc. Symp. Proc. 358, (1995), this volume.

  12. 12.

    L. Tsybeskov et al, ‘Photoluminescence and electroluminescence in partially oxidized porous silicon’, Mat. Res. Soc. Symp. Proc. 358, (1995), this volume.

  13. 13.

    C. Peng et al, Mat. Res. Soc. Symp. Proc. 298, 179 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    S. F. Chuang, Ph. D. dissertation, Massachusetts Institute of Technology, 1989.

    Google Scholar 

  15. 15.

    R. L. Smith and S. D. Collins, J. Appl. Phys. 71, R1 (1992).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. P. Duttagupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duttagupta, S.P., Fauchet, P.M., Peng, C. et al. Micron-Size and Submicron-Size Light-Emitting Porous Silicon Structures. MRS Online Proceedings Library 358, 647 (1994). https://doi.org/10.1557/PROC-358-647

Download citation