Optical Characterization of an Array of Quantum Wires


A self-consistent many-body theory is developed to study the effect of temperature and electron density on the interband absorption coefficient and the frequency-dependent refractive index for an array of isolated quantum wires. The peaks in the absorption coefficient correspond to interband transitions resulting in the resonant absorption of light. The oscillations in the derivative spectrum are due to the quantization of the energy levels related to the in-plane confining potential for such reduced dimensional systems. There are appreciable changes in the absorption spectrum when the electron density or temperature is increased. One interband transition peak is suppressed in the high electron density limit and the thermal depopulation effect on the electron subbands can be easily seen when the temperature is high. We also find that the exciton coupling weakens the shoulder features in the absorption spectrum. This study is relevant to optical characterization of the confining potential and the areal density of electrons using photoreflectance. By using incident light with tunable frequencies in the interband excitation regime, contactless photoreflectance measurements may be carried out and the data compared with our calculations. By fitting the numerical results to the peak positions of the photoreflectance spectrum, the number of electrons in each wire may be extracted.

This is a preview of subscription content, access via your institution.


  1. 1.

    Optical Phenomena in Semiconductor Structures of Reduced Dimensionality, Vol. 248 of NATO Advanced Study Institute, Series 5, edited by D. J. Lockwood and A. Pinczuk (Kluwer Academic, Dordrecht, 1993).

  2. 2.

    Nanostructure Physics and Fabrication, edited by M. A. Reed and W. R. Kirk (Academic, San Diego, 1989).

    Google Scholar 

  3. 3.

    W. Wegscheider, L. Pfeiffer, M. Dignam, A. Pinczuk, and K. West, in Growth, Processing, and Characterization of Semiconductor Heterostructures, edited by G. Gumbs, S. Luryi, B. Weiss, and G. W. Wicks, Mat. Res. Soc. Proc. 326, 401 (1994).

  4. 4.

    G. Gumbs, D. H. Huang, and D. Heitmann, Phys. Rev. B 44, 8084 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    L. Wendler and V. G. Grigoryan, Phys. Stat, Sol. B181, 133 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    P. W. Park, A. H. MacDonald, and W. L. Schaich, Phys. Rev. B 46, 12635 (1992).

    CAS  Article  Google Scholar 

  7. 7..

    A. S. Plaut, H. Lage, P. Grambow, D. Heitmann, K. Von Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 1642 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    G. W. Bryant, Comments Cond. Mat. Phys. 14, 277 (1989).

    CAS  Google Scholar 

  9. 9.

    A recent photoreflectance experiment on a GaAs/GaAlAs modulation doped quantum dot array shows that at 77 K the “2C - 2H” interband transition develops a series of evenly spaced oscillations, subbands. No fine structure is observed for the “1C - 1H”/“1C - lL”, transitions since the first electron subband is occupied. F. H. Pollak, et al. (unpublished).

  10. 10.

    J. Callaway, Energy Band Theory, (Academic, New York, 1964), p. 287.

    Google Scholar 

  11. 11.

    D. H. Huang, G. Gumbs, and N. J. M. Horing, Phys. Rev. B 49, 11463 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    G. Gumbs, D. Huang, Y. Yin, H. Qiang, D. Yan, F. H. Pollak, and T. F. Noble, Phys. Rev. B 48, 18328 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Gumbs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gumbs, G. Optical Characterization of an Array of Quantum Wires. MRS Online Proceedings Library 358, 49 (1994). https://doi.org/10.1557/PROC-358-49

Download citation