Theory of the Physical Properties of Si Nanocrystals


This paper reviews calculations concerning several aspects of silicon crystallites and their relevance for porous silicon. This begins with the optical properties of perfect crystallites: gap versus size, radiative recombination time, relative importance of phonon assisted transitions. A second part is devoted to the determination of the excitonic exchange splitting and of the Stokes shift which are found to bring a similar contribution (≈10 to 20 meV). The effect of surface defects like dangling bonds is then investigated with their contribution to the recombination time. The Auger non radiative recombination time is also calculated and found to be short (≈1 nsec). This is confirmed by some experiments on porous silicon which show a saturation effect of the photoluminescence under intense optical excitation or under cathodic polarization in aqueous solution, Auger recombination preventing the existence of more than one electron-hole pair per crystallite. Donor and acceptor impurities are studied in detail (screening of Coulomb potential, notion of ionization energy) with the conclusion that they are ionized. A final discussion shows the present level of understanding and identifies problems remaining to be solved.

This is a preview of subscription content, access via your institution.


  1. 1

    L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    CAS  Article  Google Scholar 

  2. 2

    J.P. Proot, C. Delerue and G. Allan, Appl. Phys. Lett. 61, 1948 (1992); C. Delerue, G. Allan and M. Lannoo, in Optical Properties of Low Dimensional Silicon Structures edited by D.C. Bensahel, L.T. Canham and S. Ossicini (NATO ASI Series, Kluwer Academic Publishers, 1993) p.229; C. Delerue, G. Allan and M. Lannoo, Phys. Rev. B. 48, 11024 (1993).

    CAS  Article  Google Scholar 

  3. 3

    A. Bsiesy, J.C. Vial, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestain, A. Wasiela, A. Maimaoui, and G. Bomchil, Surface Science 254, 195 (1991).

    CAS  Article  Google Scholar 

  4. 4

    P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, and D. Brumhead, J. Phys.: Condensed Matter 5, L94 (1993).

    Google Scholar 

  5. 5

    I. Sagnes, A. Halimaoui, G. Vincent, and P.A. Badoz, Appl. Phys. Lett. 62, 1155 (1993).

    CAS  Article  Google Scholar 

  6. 6

    B.K. Meyer, D.M. Hofmann, W. Stadler, V. Petrova-Koch, F. Koch, P. Omling and P. Emanuelsson, Appl. Phys. Lett. 63, 2120 (1993).

    CAS  Article  Google Scholar 

  7. 7

    P. B. Allen, J.Q. Broughton, and A.K. McMahan, Phys. Rev. B 34, 859 (1986).

    CAS  Article  Google Scholar 

  8. 8

    A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, Appl. Phys. Lett. 59, 304 (1991).

    CAS  Article  Google Scholar 

  9. 9

    S. Y. Ren and J. D. Dow, Phys. Rev. B 45, 6492 (1992).

    CAS  Article  Google Scholar 

  10. 10

    E. F. Steigmeier, B. Delley, and H. Auderset, Phys. Scr. T 45, 305 (1992).

    Article  Google Scholar 

  11. 11

    G. D. Sanders and Y. Chang, Phys. Rev. B 45, 9202 (1992).

    CAS  Article  Google Scholar 

  12. 12

    T. Ohno, K. Shiraishi, and T. Ogawa, Phys. Rev. Lett. 69, 2400 (1992).

    CAS  Article  Google Scholar 

  13. 13

    A.J. Read, R.J. Needs, K. J. Nash, L. T. Canham, P.D.J. Calcott and A. Qteish, Phys. Rev. Lett. 69, 1232 (1992).

    CAS  Article  Google Scholar 

  14. 14

    F. Buda, J Kohanoff, and M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992).

    CAS  Article  Google Scholar 

  15. 15

    T. Takagahara and K. Takeda, Phys. Rev. B 46, 15 578 (1992).

    Article  Google Scholar 

  16. 16

    F. Huaxiang, Y Ling, and X. Xide, J. Phys. Condens. Matter 5, 1221 (1993).

    Article  Google Scholar 

  17. 17

    M. V. RamaKrishna and R. A. Friesner, J. Chem. Phys. 96, 873 (1992).

    Article  Google Scholar 

  18. 18

    Wang Lin-Wang and A. Zunger, J. Chem. Phys, to be published.

  19. 19

    W.A. Saunders, H.A. Atawer, K.J. Vahala, R.C. Flagan, P.C. Sercel, Material Research Society Symposium 283, 77 (1993).

    CAS  Article  Google Scholar 

  20. 20

    H. Takagi, H. Ogawa, Y Yamazaki, A. Ishizaki, T. Nakagiri, Appl.Phys.Lett. 56, 2379 (1990).

    CAS  Article  Google Scholar 

  21. 21

    K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, L.E. Brus, J.Phys.Chem. 97, 1224 (1993).

    CAS  Article  Google Scholar 

  22. 22

    S. Schuppler, S.L Friedman, M.A Marcus, D.L. Adler, Y.H. Xie, F.M. Ross, T.D. Harris, W.L. Brown, V.J. Chabal, L.E. Brus and P.H. Citrin, Phys. Rev. Lett. 72, 2648 1994).

    CAS  Article  Google Scholar 

  23. 23

    D.L Dexter, in Solid State Physics, Advances in Research and Applications, edited by F. Seitz and D. Turnbull (Academic, New-york, 1958) Vol 6, p 360.

    Google Scholar 

  24. 24

    M. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).

    CAS  Article  Google Scholar 

  25. 25

    V. Lehmann and U. Gosele, Appl. Phys. Lett. 59, 304 (1991).

    Article  Google Scholar 

  26. 26

    P.D.J. Calcott, K.J. Nash, L.T. Canham, M.J. Kane, and D. Brumhead, in Microcrystalline Semiconductors - Materials Science and Devices, edited by P.M. Fauchet, C.C. Tsai, L.T. Canham, I. Shimizu and Y. Aoyagi (Mater. Res. Soc. Proc. 283, Pittsburg, PA, 1993) p 143.

  27. 27

    X.L. Zheng, W. Wang, H.C Chen, Appl. Phys. Lett. 60, 986 (1992).

    CAS  Article  Google Scholar 

  28. 28

    J.C. Vial, A. Bsiesy, G. Fishman, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestain and R.M. Macfarlane, Mat. Res. Soc. Symp. Proc. Vol 283, p 241 (1993).

    CAS  Article  Google Scholar 

  29. 29

    G. Fishman; R. Romestain and J.C. Vial, Journal de Physique IV, supplément du Journal de Physique II N° 10. Colloque C5, Proc. 3rd Intern. Conf. on Optics of Excitons in Confined Systems, Volume 3, p 355 (1993).

    CAS  Google Scholar 

  30. 30

    E. Martin, C. Delerue, G. Allan and M. Lannoo, to be published in Phys. Rev. B (Dec. 1994).

    Google Scholar 

  31. 31

    G. Allan, C. Delerue and M. Lannoo, Phys. Rev. B 48, 7951, (1993).

    CAS  Article  Google Scholar 

  32. 32

    M.S. Brandt and M. Stutzmann, Appl. Phys. Lett. 61, 2569 (1992).

    CAS  Article  Google Scholar 

  33. 33

    H.J. Von Bardeleben, D. Stiévenard, A. Grosman, C. Ortega, and J. Siejka, Phys. Rev. B 47, 10 899 (1993).

    Google Scholar 

  34. 34

    D. Goguenheim and M. Lannoo, J. Appl. Phys 68, 1059 (1990); D. Goguenheim and M. Lannoo, Phys. Rev. B 44, 1724 (1991).

    CAS  Article  Google Scholar 

  35. 35

    E. Yablonovitch and T. Gmitter, Appl. Phys. Lett. 49, 587 (1986).

    CAS  Article  Google Scholar 

  36. 36

    P. T. Landsberg, in Recombination in Semiconductors (Cambridge University Press, 1991).

    Google Scholar 

  37. 37

    I. Mihalcescu, J. C. Vial, A. Bsiesy, F. Muller, R. Romestain, E. Martin, C. Delerue, M. Lannoo and G. Allan, to be published.

  38. 38

    J. C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestain, Macfarlane, Phys. Rev. B 45, 14171 (1992).

    CAS  Article  Google Scholar 

  39. 39

    A. Bsiesy, F. Muller, I. Mihalcescu, M. Ligeon, F. Gaspard, R. Hérino, R. Romestain and J. C. Vial, in Light Emission from Silicon, ed. By J. C. Vial, L. T. Canham and W. Lang, J. Lum. 57 (Elsevier North-Holland, 1993) p. 29.

    CAS  Google Scholar 

  40. 40

    R. Tsu and D. Babic, in Optical properties of low dimensional silicon structures, D.C. Ben-sahel, L.T. Canham and S. Ossicini Eds NATO, ASI Series (Kluwer Academic Publishers, Dordrecht 1993).

  41. 41

    G. Allan, C. Delerue and M. Lannoo, to be published.

  42. 42

    L. W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Lannoo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lannoo, M., Delerue, C., Allan, G. et al. Theory of the Physical Properties of Si Nanocrystals. MRS Online Proceedings Library 358, 13 (1994).

Download citation