AFM/SEM Study of Thermally Induced Hillock Coalescence

Abstract

The growth of hillocks and voids in metal films was studied. The applicability of a model involving fractals and kinetic equations was examined on the basis of whether there is independent justification for using scaling arguments in the model and whether there is reason to connect the evolution of hillocks with that of voids. Hillocks and voids were found to be self-similar across about three orders of magnitude of variation in spatial scale with the same fractal dimension. Voids and hillocks were found to have the same fractal dimension whether studied using atomic force microscopy (AFM) or scanning electron microscopy (SEM). The parameters obtained from these fractal analyses demonstrate quantitative internal consistency with an earlier time dependent study of thermal annealing effects on hillock distributions. Remarkably, area-perimeter data obtained from either a long-time study of a single void or a spatial average of a large number of different voids both yield quantitatively identical results.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    J. Goodisman, J. Chaiken, manuscript accepted Thin Solid Films (11/30/94)

  2. 2

    M. Villarica, M. J. Casey, J. Goodisman, J. Chaiken, J. Chem. Phys. 98, 4610–4625 (1993)

    CAS  Article  Google Scholar 

  3. 3

    S. Aceto, C. Y. Chang, R. W. Vook, Thin Solid Films 219, 80–86 (1992)

    CAS  Article  Google Scholar 

  4. 4

    R. W. Vook, Materials Chemistry and Physics 36, 199–216 (1994)

    CAS  Article  Google Scholar 

  5. 5

    J. Goodisman, J. Chaiken, J. Photochem Photobio. A.80, 53–59 (1994)

    Article  Google Scholar 

  6. 6

    R. Botet and R. Jullien, J. Phys. Math. A: Math. Gen. 17, 2517–2530 (1984)

    Article  Google Scholar 

  7. 7

    John W. Brady, Jimmie D. Doll, Donald L. Thompson, J. Chem. Phys. 74, 1026–1028 (1981) and earlier papers referenced therein

    CAS  Article  Google Scholar 

  8. 8

    I. Langmuir, J. Meteorl. 5, 175–192 (1948)

    Article  Google Scholar 

  9. 9

    R. Jullien, New J. Chem. 14, 239 (1990)

    CAS  Google Scholar 

  10. 10

    R. C. Srivastava, J. Atmos. Sci. 45, 1091–1092 (1988)

    Article  Google Scholar 

  11. 11

    W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943)

    CAS  Article  Google Scholar 

  12. 12

    G. Korvin, Fractal Models in the Earth Sciences. (Elsevier, New York, 1992) page 193 in connection withdiscussion of equation (3.1.7)

    Google Scholar 

  13. 13

    G. Korvin, Fractal Models in the Earth Sciences. (Elsevier, New York, 1992) (Elsevier, New York, 1992) page 171

    Google Scholar 

  14. 14

    G. Korvin, Fractal Models in the Earth Sciences, (Elsevier, New York, 1992) (Elsevier, New York, 1992) page 66

    Google Scholar 

  15. 15

    Yolanda J. Kime and Peter Grach, Mat. Res. Soc. Proc. 338, 255–260 (1994)

    CAS  Article  Google Scholar 

  16. 16

    W. Robert Thomas and Donald W. Calabrese, “Phenomenological Observations of Electromigration”, 21st Annual Proceedings International Reliability Physics Symposium(IRPS), 1983, pp. 1–9

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Chaiken.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaiken, J., Goodisman, J., Villarica, R.M. et al. AFM/SEM Study of Thermally Induced Hillock Coalescence. MRS Online Proceedings Library 356, 489–494 (1994). https://doi.org/10.1557/PROC-356-489

Download citation