A Model for Oxide Film Evolution on Alloys and Prediction of Resulting Layer Structure

Abstract

Alloys and their oxides are a very important class of materials on which modern society depends. Yet, today we do not have an adequate fundamental physical-chemical model of how oxides evolve on alloys under oxidizing conditions. This physical chemical understanding will effect our ability to design a wide range of materials from electronic devices to the improved protective oxide films on alloys. The fundamental progress, in both physics and chemistry, made on several critical questions,

  • • What interface(s) control alloy oxidation and how?

  • • What parameters provide the driving potential for oxidation?

  • • How does this potential respond to temperature (T), pressure (P) and compositional changes? will be discussed. Progress on these questions have allowed models to be proposed to predict alloy oxidation behavior under any set of conditions. These models are already providing some predictive power in how the oxide overlayer and passive film structure develop. By using surface studies of the oxidation behavior of the following alloys and their thin films: Cu-Mn, Ag-Mn, Ni-Ti, Ni-Zr, Ti-Cu and Ti-Al, we have been able to delineate the factors which are most important to the oxide formation process and provide insight into the prediction of oxide layer structures. These will be illustrated with actual experimental results on selected alloys.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. P. Fehlner, Low-Temperature Oxidation, (John Wiley, New York, 1986).

    Google Scholar 

  2. 2.

    A. Atkinson, Rev. Mod. Phys. 57, 437 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    K. R Lawless, Rep. Prog. Phys. 37, 231 (1974).

    CAS  Article  Google Scholar 

  4. 4.

    G. R. Wallwork, Rep. Prog. Phys. 39, 401 (1976).

    CAS  Article  Google Scholar 

  5. 5.

    C. H. Yoon and D. L. Cocke, J. Noncrystalline Solids 79, 217 (1986).

    CAS  Article  Google Scholar 

  6. 6.

    P. Kofstad, High Temperature Oxidation of Metals, (John Wiley, New York, 1966).

    Google Scholar 

  7. 7.

    K. Hauffe, Oxidation of Metals, (Plenum Press, New York, 1965).

    Google Scholar 

  8. 8.

    W. W. Smeltzer and D. J. Young, Prog. Solid State Chem. 10, 17 (1975).

    Article  Google Scholar 

  9. 9.

    G. C. Wood and F. H. Stott, Mat. Sci. Technol. 3, 519 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    T. P. Hoar and L. E. Price, Trans. Faraday Soc. 34, 867 (1938).

    CAS  Article  Google Scholar 

  11. 11.

    J. M. Bailey and I. M. Ritchie, Oxid. Metals 30, 405 & 419 (1988).

    CAS  Article  Google Scholar 

  12. 12.

    K. J. Vetter, Electrochemical Kinetics: Theoretical and Experimental Aspects, (Academic Press, New York 1967).

    Google Scholar 

  13. 13.

    F. A. Kröger, The Chemistry of Imperfect Crystals. Applications of Imperfection Chemistry: Solid State Reactions and Electrochemistry. Volume 3, (North-Holland Publishing Company, Amsterdam 1974).

  14. 14.

    C. Yoon and D. L. Cocke, Appl. Surf. Sci. 31, 118 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    D. Meneer, D. L. Cocke and C. Yoon, Surf, and Interfac. Anal. 17, 31 (1991).

    Article  Google Scholar 

  16. 16.

    D. L. Cocke, M. S. Owens and R. B. Wright, Appl. Surf. Sci. 31, 341 (1988).

    CAS  Article  Google Scholar 

  17. 17.

    D. L. Cocke and M. S. Owens, Appl. Surf. Sci. 31, 471 (1988).

    CAS  Article  Google Scholar 

  18. 18.

    D. L. Cocke, G. Liang, D. E. Halverson and D. G. Naugle, Mater. Sci. Eng. 99, 497 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    D. L. Cocke, M. S. Owens and R. B. Wright, Langmuir 4, 1311 (1988).

    CAS  Article  Google Scholar 

  20. 20.

    D. L. Cocke and M. S. Owens, J. Colloid and Interf. Sci. 19, 166 (1989).

    Article  Google Scholar 

  21. 21.

    D. L. Cocke, T. R. Hess, D. E. Meneer, T. Mebrahtu and D. G. Naugle, Solid State Ionics 43, 119 (1990).

    CAS  Article  Google Scholar 

  22. 22.

    D. E. Meneer, T. R. Hess, T. Mebrahtu, D. L. Cocke and D. G. Naugle, J. Vac. Sci. Tech. A9, 1610 (1991).

    Google Scholar 

  23. 23.

    D. L. Cocke, T. R. Hess, D. E. Meneer, and D. G. Naugle, in Proceedings of the 183rd Meeting of the Electrochemical Society, May 1993, Honolulu, Hawaii.

    Google Scholar 

  24. 24.

    D. R. Stull and H. Prophet, JANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, (U. S.Government Printing Office, Washington D. C 1971)

    Google Scholar 

  25. 24a.

    R. C. Weast, ed., CRC Handbook of Chemistry and Physics. 63rd edition, (CRC Press, Inc., Boca Raton 1982).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David L. Cocke.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cocke, D.L., Dorris, K., Naugle, D.G. et al. A Model for Oxide Film Evolution on Alloys and Prediction of Resulting Layer Structure. MRS Online Proceedings Library 355, 421–426 (1994). https://doi.org/10.1557/PROC-355-421

Download citation