Ambient and High Temperature STM Investigations of the Growth of Titanium Suicide on Silicon Substrates


A variable temperature scanning tunnelling microscope (STM) in UHV has been used to investigate the growth, morphology and surface atomic structure of ultrathin titanium suicide films on Si(100) and Si(111) substrates. Three stages of suicide growth have been identified based on microstructural considerations. They occur over similar temperature ranges for both substrates and may be summarised as: agglomeration and the formation of disordered islands, crystallite formation, and crystallite growth. Additionally, island burial is found for Si(100) substrates (950°C), and preferential crystallite growth is observed for high temperature processing (1200°C) of titanium silicide on Si(111).

Methods for STM crystallography have been developed and used to identify possible epitaxial silicide/silicon relationships based on morphological considerations. Atomic resolution images of titanium silicide crystallites have identified a 2×2 silicon termination of a C54-TiSi2(111) surface, a 2×2 silicon terminated C54-TiSi2(010) surface, and a reconstructed C54-TiSi2(311) surface. It has been concluded that unambiguous identification of epitaxial relationships requires images of the atomic structure of the silicide crystallite surfaces in addition to morphological information.

This is a preview of subscription content, access via your institution.


  1. 1

    L.J. Chen and K.N. Tu, Materials Science Reports 6, 61 (1991).

    Article  Google Scholar 

  2. 2

    R. Nipoti and A. Armigliato, Jap. J. Appl. Phys. 24, 1421 (1985).

    CAS  Article  Google Scholar 

  3. 3

    L.J. Chen, I.W. Wu, J.J. Chu, and C.W. Nieh, J. Appl. Phys. 63, 2778 (1988).

    CAS  Article  Google Scholar 

  4. 4

    W. Lur and L.J. Chen, J. Appl. Phys. 66, 3604 (1989).

    CAS  Article  Google Scholar 

  5. 5

    M.S. Fung, H.C. Cheng, and L.J. Chen, Appl. Phys. Lett. 47, 1312 (1985).

    CAS  Article  Google Scholar 

  6. 6

    I.C. Wu, J.J. Chu, and L.J. Chen, J. Appl. Phys. 60, 3172 (1986).

    CAS  Article  Google Scholar 

  7. 7

    J.J. Chu, I.C. Wu, and L.J. Chen, J. Appl. Phys. 61, 549 (1987).

    CAS  Article  Google Scholar 

  8. 8

    A. Catana, P.E. Schmid, M. Heintze, F. Levy, P. Stadelmann, and R. Bonnet, J. Appl. Phys. 67, 1820 (1990).

    CAS  Article  Google Scholar 

  9. 9

    C.K. Choi, H.H. Park, J.Y. Lee, K.I. Cho, M.C. Paek, O.J. Kwon, K.H. Kim, and S.J. Yang, J. of Crystal Growth 115, 579 (1991).

    CAS  Article  Google Scholar 

  10. 10

    K.H. Kim, J.J. Lee, D.J. Seo, C.K. Choi, S.R. Hong, J.D. Koh, S.C. Kim, J.Y. Lee, and M.A. Nicolet, J. Appl. Phys. 71, 3812 (1992).

    CAS  Article  Google Scholar 

  11. 11

    M.H. Wang and L.J. Chen, J. Appl. Phys. 71, 5918 (1992).

    CAS  Article  Google Scholar 

  12. 12

    M. Berti, A.V. Drigo, C. Cohen, J. Siejka, G.G. Bentini, R. Nipoti, and S. Guerri, J. Appl. Phys. 55, 3558 (1984).

    CAS  Article  Google Scholar 

  13. 13

    P. Merchant and J. Amano, J. Vac. Sci. Tech. B 2, 762 (1984).

    CAS  Article  Google Scholar 

  14. 14

    R. Beyers and R. Sinclair, J. Appl. Phys. 57, 5240 (1985).

    CAS  Article  Google Scholar 

  15. 15

    F.M. d’Heurle, P. Gas, I. Engström, S. Nygren, M. Östling, and C.S. Peterson, IBM Research Report RC 11151 No. 50067 (1985).

    Google Scholar 

  16. 16

    E.J. van Loenen, A.E.M.J Fischer, and J.F. van der Veen, Surf. Sci. 155, 65 (1985).

    Article  Google Scholar 

  17. 17

    R. Butz, G.W. Rubloff, T.Y. Tan, and P.S. Ho, Phys. Rev. B 30, 5421 (1984).

    CAS  Article  Google Scholar 

  18. 18

    R.M. Tromp, G.W. Rubloff, and E.J. van Loenen, J. Vac. Sci. Technol. A 4, 865 (1986).

    CAS  Article  Google Scholar 

  19. 19

    G.W. Rubloff, R.M. Tromp, and E.J. van Loenen, Appl. Phys. Lett. 48, 1600 (1986).

    CAS  Article  Google Scholar 

  20. 20

    X. Wallart, J.P. Nys, and G. Dalmai, Appl. Surf. Sci. 38, 49 (1989).

    CAS  Article  Google Scholar 

  21. 21

    X. Wallart, J.P. Nys, H.S. Zeng, G. Dalmai, I. Lefebvre, and M. Lannoo, Phys. Rev. B 41, 3087 (1990).

    CAS  Article  Google Scholar 

  22. 22

    A.W. Stephenson and M.E. Weiland, to be submitted to J. Appl. Phys.

  23. 23

    A.W. Stephenson and M.E. Weiland, J. Appl. Phys. 77, p. n/a (1995).

  24. 24

    H. Jeon and R.J. Nemanich, Thin Solid Films 184, 357 (1990).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andrew W. Stephenson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stephenson, A.W., Wong, T.M.H. & Welland, M.E. Ambient and High Temperature STM Investigations of the Growth of Titanium Suicide on Silicon Substrates. MRS Online Proceedings Library 355, 287–292 (1994).

Download citation