Sputtering Induced Changes in Defect Morphology and Dopant Diffusion for Si Implanted GaAs: Influence of Ion Energy and Implant Temperature

Abstract

Experimental observations of dopant diffusion and defect formation are reported as a function of ion energy and implant temperature in Si implanted GaAs. In higher energy implants (>100 keV), little or no diffusion occurs, while at energies less than 100 keV, the amount of dopant redistribution is inversely proportional to energy. The extended defect density shows the opposite trend, increasing with increasing ion energy. Similarly, the diffusion of Si during post implant annealing decreases by a factor of 2.5 as the implant temperature increases from -2 to 40°C. In this same temperature range, the maximum depth and density of extrinsic dislocation loops increases by factors of 3 and 4, respectively. Rutherford Backscattering (RBS) channeling measurements indicate that Si implanted GaAs undergoes an amorphous to crystalline transition at Si implant temperatures between -51 and 40°C. A unified explanation of the effects of ion energy and implant temperature on both diffusion and dislocation formation is proposed based on the known differences in sputter yields between low and high energy ions and crystalline and amorphous semiconductors. The model assumes that the sputter yield is enhanced at low implant energies and by amorphization, thus increasing the excess vacancy concentration. Estimates of excess vacancy concentration are obtained by simulations of the diffusion profiles and are quantitatively consistent with a realistic sputter yield enhancement. Removal of the vacancy rich surface by etching prior to annealing completely suppresses the Si diffusion and increases the dislocation density, lending further experimental support to the model.

This is a preview of subscription content, access via your institution.

Reference

  1. 1.

    P. A. Packan and J. D. Plummer, Appi. Phys. Lett. 56, 1787 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    M. D. Deal and H. G. Robinson, Appi. Phys. Lett. 55, 996 (1989).

    CAS  Article  Google Scholar 

  3. 3.

    D. H. Lee and R. M. Malbon, Appi. Phys. Lett. 30, 327 (1977).

    CAS  Article  Google Scholar 

  4. 4.

    J. Kasahara, Y. Kato, M. Arai and N. Watanabe, J. Electro. Chem. Soc. 130, 2275 (1983).

    CAS  Article  Google Scholar 

  5. 5.

    Y. K. Yeo, R. L. Hengehold, Y. Y. Kim, A. Eziz, Y. S. Park and J. E. Ehret, J. Appi. Phys. 58, 4083 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    E. L. Allen, J. J. Murray, M. D. Deal, J. D. Plummer, K. S. Jones and W. S. Rubart, J. of Electro. Chem. Soc. 138, 3440 (1991).

    CAS  Article  Google Scholar 

  7. 7.

    J. J. Murray, Ph.D. thesis, Stanford University, 1992.

    Google Scholar 

  8. 8.

    T. E. Haynes and O. W. Holland, Appi. Phys. Lett. 52, 452 (1991).

    Article  Google Scholar 

  9. 9.

    K. S. Jones, H. G. Robinson, T. E. Haynes, M. D. Deal, C. C. Lee and E. L. Allen, in III-V Electronic and Photonic Device Fabrication and Performance, edited by K. S. Jones, S. J. Pearton and H. Kanber (Materials Research Society 300, Pittsburgh, 1993) p. 323.

  10. 10.

    C. C. Lee, M. D. Deal, K. S. Jones, H. G. Robinson and J. C. Bravman, J. of Electrochemical Soc. 141, 2245 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    H. G. Robinson, T. E. Haynes, E. L. Allen, C. C. Lee, M. D. Deal and K. S. Jones, J. of Appi. Phys. 78, (1994).

  12. 12.

    J. J. Murray, M. D. Deal and D. A. Stevenson, Appi. Phys. Lett. 56, 472 (1989).

    Article  Google Scholar 

  13. 13.

    C. C. Lee, M. D. Deal and J. C. Bravman, Appi. Phys. Lett. (1994).

    Google Scholar 

  14. 14.

    J. B. Malherbe, Crit. Rev. in Sol. State and Mats. Sci. 19, 55 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    G. S. Anderson, J. of Appi. Phys. 38, 1607 (1967).

    CAS  Article  Google Scholar 

  16. 16.

    J. Farren and W. J. Scaife, Talanta 15, 1217 (1968).

    CAS  Article  Google Scholar 

  17. 17.

    G. Holmén, Rad. Eff. 24, 7 (1975).

    Article  Google Scholar 

  18. 18.

    J. Nizam and N. Benazeth-Colombie, Rev. Phys. Appi. 10, 183 (1975).

    CAS  Article  Google Scholar 

  19. 19.

    M. D. Deal, C. J. Hu, C. C. Lee and H. G. Robinson, in III-V Electronic and Photonic Device Fabrication and Performance, edited by K. S. Jones, S. J. Pearton and H. Kanber (Materials Research Society 300, Pittsburgh, 1993) p. 365.

  20. 20.

    J. P. Biersack and L. G. Haggmark, Nucl. Inst. Meth. 174, 257 (1980).

    CAS  Article  Google Scholar 

  21. 21.

    M. D. Deal, S. E. Hansen and T. W. Sigmon, IEEE Trans. Computer-Aided Design CAD-8. 939 (1989).

    Article  Google Scholar 

  22. 22.

    C. C. Lee, Ph.D. thesis, Stanford University, 1994.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. G. Robinson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robinson, H.G., Lee, C.C., Haynes, T.E. et al. Sputtering Induced Changes in Defect Morphology and Dopant Diffusion for Si Implanted GaAs: Influence of Ion Energy and Implant Temperature. MRS Online Proceedings Library 354, 337–342 (1994). https://doi.org/10.1557/PROC-354-337

Download citation