Atomic Transport by Ion Beam Mixing in the Radiation Enhanced Diffusion Region

Abstract

In order to study atomic transport in the radiation enhanced diffusion (RED) region, Pd/Co bilayers were intermixed by 80keV Ar+ in the temperature range from 90 K to 700 K. The critical temperature for the onset of RED was found to be ∼ 400 K, and the transported amount of Pd atoms was found to be always larger than that of Co in the RED region. This result cannot be explained by pre-existing models. Thus we have developed a comprehensive model for atomic transport in the RED region including size effect, damage controlled effect, and cohesive energy effect.

This is a preview of subscription content, access via your institution.

Reference

  1. [1]

    L. E. Rehn and P. R. Okamoto, Nucl. Instrum. Methods B39, 104 (1989).

    CAS  Article  Google Scholar 

  2. [2]

    Y. T. Cheng, Mater. Sci. Rept. 5, 45 (1990).

    Article  Google Scholar 

  3. [3]

    G. W. Auner, Y. T. Cheng, M. H. Alkais, and K. R. Padmanabhan, Appl. Phys. Lett. 58, 586 (1991), and Nucl. Instrum. Methods B59/60, 504 (1991).

    CAS  Article  Google Scholar 

  4. [4]

    K. Tao, C. A. Hewett, S. S. Lau, Ch. Bûchai and D. B. Poker, Appl. Phys. Lett. 50, 1343 (1987).

    CAS  Article  Google Scholar 

  5. [5]

    F. R. Ding, R. S. Averback, and H. Hann, J. Appl. Phys. 64, 1785 (1988).

    CAS  Article  Google Scholar 

  6. [6]

    K. H. Chae, J. M. Choi, S. M. Jung, J. H. Joo, J. K. Kim, H. J. Kang and C. N. Whang, Nucl. Instrum. Methods B88, 387 (1994).

    Article  Google Scholar 

  7. [7]

    K. H. Chae, J. H. Song, S. M. Jung, H. G. Jang, J. J. Woo, K. Jeong, and C. N. Whang, J. Appl. Phys. 73, 4292 (1993).

    CAS  Article  Google Scholar 

  8. [8]

    A. R. Miedema, Phil. Techn. Rev. 36, 217 (1976).

    CAS  Google Scholar 

  9. [9]

    E. G. Colgan and J. W. Mayer, Nucl. Instrum. Methods B17, 242 (1986).

    CAS  Article  Google Scholar 

  10. [10]

    Y. T. Cheng, X. A. Zhao, T. W. Workmann, M.-A. Nicolet, and W. L. Johnson, J. Appl. Phys. 60, 2615 (1986).

    CAS  Article  Google Scholar 

  11. [11]

    G. S. Chen, D. Farkas, and M. Rangaswamy, Mater. Soc. Symp. Proc. 128, 195 (1989).

    CAS  Article  Google Scholar 

  12. [12]

    W. L. Johnson, Y. T. Cheng, M. Van Rossum, and M.-A. Nicolet, Nucl. Instrum. methods B7/8, 657 (1985).

    Article  Google Scholar 

  13. [13]

    R. Sizmann, J. Nucl. Mater. 69/70, 386 (1978).

    Article  Google Scholar 

  14. [14]

    J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids (Edition De Physique, Les Ulis, 1991), p.98.

    Google Scholar 

  15. [15]

    G. Neumann and W. Hirschwald, Phys. Status Solidi B55, 99 (1973).

    Article  Google Scholar 

  16. [16]

    A. D. Le Claire, J. Nucl. Mater. 69/70, 70 (1978).

    Article  Google Scholar 

  17. [17]

    M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50 1285 (1983).

    CAS  Article  Google Scholar 

  18. [18]

    R. A. Johnson and N. Q. Lam, Phys. Rev. B13, 4364 (1976).

    Article  Google Scholar 

  19. [19]

    H. Wiedersich, P. R. Okamoto, and N. Q. Lam, J. Nucl. Mater. 83, 98 (1979).

    CAS  Article  Google Scholar 

  20. [20]

    H. H. Andersen, Appl. Phys. 18, 131 (1979)

    CAS  Article  Google Scholar 

  21. [21]

    S. M. Myers, Nucl. Instrum. Methods 168, 265 (1980)

    CAS  Article  Google Scholar 

  22. [22]

    P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Jung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, S.M., Chang, G.S., Joo, J.H. et al. Atomic Transport by Ion Beam Mixing in the Radiation Enhanced Diffusion Region. MRS Online Proceedings Library 354, 21–26 (1994). https://doi.org/10.1557/PROC-354-21

Download citation