Damage and Lattice Strain in Ion-Irradiated AlxGai-xAs


Radiation-induced damage and strain in AlxGai-xAs (x=5 to 1) were investigated by measurements of the lattice parameter using x-ray diffraction. Irradiations employed MeV C, Ar and Au ion beams with a substrate temperature of 80 K. For samples with high Al content, the out-of-plane lattice parameter increased with fluence at low doses, saturated, and then decreased to nearly its original value. The in-plane lattice parameter did not change, throughout. These results were independent of the irradiation particle when scaled by damage energy. For the Al.5Ga.5As samples, however, the out-of-plane lattice parameter increased monotonically with dose to large strains until the layer amorpnized. Selected samples were examined by high resolution and conventional transmission electron microscopy (TEM). Channeling Rutherford backscattering spectrometry (CRBS) was also employed to monitor the buildup of damage in many samples. Recovery of the lattice parameter during subsequent thermal annealing was also investigated.

This is a preview of subscription content, access via your institution.


  1. 1.

    A.G. Cullis, N.G. Chew and A.G. Whitehouse, Appl. Phys. Lett. 55, 1121 (1989).

    Article  Google Scholar 

  2. 2.

    Cullis, P.W. Smith, D.C. Jacobson and J.M. Poate, J. Appl. Phys. 69, 1279 (1991).

    Article  Google Scholar 

  3. 3.

    I. Jencic, M.W. Bench, L.M. Robertson and M.A. Kirk, J. Appl. Phys. 69, 1287 (1991).

    CAS  Article  Google Scholar 

  4. 4.

    D.L. Eaglesham, J.M. Poate, D.C. Jacobson, M. Cerullo, L.N. Pfeiffer and K. West,. Appl. Phys. Lett. 58, 523 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    J.L. Matt, R.S. Averback, D. Forbes and J.J. Coleman, Phys. Rev. B. 48, 17629 (1993)

    Article  Google Scholar 

  6. 6.

    L.M. Miller and J.J. Coleman, CRC Crit. Rev. Solid State Mater. Sci. 15, 1 (1988); Appl. Phys. Lett. 59, 338 (1991).

    Google Scholar 

  7. 7.

    J.P. Biersack and L.G. Haggmark, Nucl. Instr. and Meth. 174, 257 (1980)

    CAS  Article  Google Scholar 

  8. 7a.

    J. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids. (Pergamon Press, New York, 1985) Vol. 1.

  9. 8.

    S.N. Novikova, Sov. Phys. Solid State (English Transi.) 3, 129 (1961).

    Google Scholar 

  10. 9.

    F. Xiong, C.J. Tsai, T. Vreelan Jr., T.A. Tombrello, C.L. Schwartz and S.A. Schwarz, J. Appl. Phys. 69, 2964 (1991).

    CAS  Article  Google Scholar 

  11. 10.

    T. Egami, and Y. Waseda, J. Non-Cryst. Solids 64, 113 (1984).

    CAS  Article  Google Scholar 

  12. 11.

    G. Linker, Solid State Commun. 57, 773 (1986).

    CAS  Article  Google Scholar 

  13. 12.

    P.R. Okamoto and M. Meshii, Science of Advanced Materials, edited by H. Wiedersich and M. Meshii (ASM, Metals Park, OH, 1990).

  14. 13.

    G. Lück and R. Sizmann, Phys. Stat Solid!. 5, 507 (1964).

    Article  Google Scholar 

  15. 14.

    F. Dworschak, R. Lennartz and H. Wollenberger, J. Phys. F: Metal Phys. 5, 400, (1975).

    CAS  Article  Google Scholar 

  16. 15.

    P. Ehrhart, K. Karsten and A. Pillukat in Beam-Solid Interactions: Fundamentals and Applications, edited by M. Nastasi, L. R. Harriott, N. Herbots, and R.S. Averback (Mat. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993) p. 75.

    CAS  Google Scholar 

  17. 16.

    C. Volkert, J. Appl. Phys. 70, 3521 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Partyka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Partyka, P., Averback, R.S., Forbes, D.V. et al. Damage and Lattice Strain in Ion-Irradiated AlxGai-xAs. MRS Online Proceedings Library 354, 219–224 (1994). https://doi.org/10.1557/PROC-354-219

Download citation