Modeling of the Association of Metal Ions with Heterogeneous Environmental Sorbents

Abstract

The use of mechanistic (surface-complexation, electric-double layer) and semi-empirical (affinity spectrum) models for representation of the association of metal ions with heterogeneous environmental materials, such as humic acids and soil particle surfaces, is compared. It is seen that mechanistic models are not nearly as mechanistic as one generally assumes, and that semi-empirical models are much more valuable than one might assume by comparison to simple Kd, models. A semi-empirical discrete-log-K-spectrum model was used to describe the binding of Co(II), as a function of pH and NaClO4 concentration, to two environmental substrates: leonardite humic acid and a kaolinitic subsoil. Excellent agreement of the model and the data was obtained over a wide range of solution composition. These models appear to be the most promising among several alternatives for modeling interactions of metal ions with complex heterogeneous environmental materials over a wide range of solution composition.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. D. Waite, in Trace Element Speciation: Analytical Methods and Problems, edited by G. E. Batley (CRC Press, Boca Raton, 1989), pp. 117–184.

  2. 2.

    R. L. Bassett and D. C. Melchior, in Chemical Modeling of Aqueous Systems II, edited by D. C. Melchior and R. L. Bassett (ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990), pp. 1–14.

  3. 3.

    F. M. M. Morel, J. C. Westall, C. R. O’Melia, and J. J. Morgan, Environ. Sci. Technol. 9, 756 (1975).

    CAS  Google Scholar 

  4. 4.

    W. Stumm and P. Brauner, in Chemical Oceanography, 2nd ed., edited by J. P. Riley and G. Skirrow (Academic Press, New York, 1975), Vol. I, pp. 173–279.

  5. 5.

    S. H. Eberle and W. Feuerstein, Naturwissenschaften, 66, 572–573 (1979).

    CAS  Google Scholar 

  6. 6.

    J. C. Westall, “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 1.2,” Report 82-01, Department of Chemistry, Oregon State University, Corvallis, OR, 1982.

    Google Scholar 

  7. 7.

    B. Leuenberger and P. W. Schindler, Anal. Chem. 58, 1471–1474 (1986).

    CAS  Google Scholar 

  8. 8.

    D. A. Dzombak, W. Fish, and F.M.M. Morel, Environ. Sci. Technol. 20, 669–675 (1986).

    CAS  Google Scholar 

  9. 9.

    W. Fish, D. A. Dzombak, and F.M.M. Morel, Environ. Sci. Technol. 20, 676–683 (1986).

    CAS  Google Scholar 

  10. 10.

    P. Brassard, J. R. Kramer, and P. V. Collins, Environ. Sci. Technol. 24, 195–201 (1990).

    CAS  Google Scholar 

  11. 11.

    S. E. Cabaniss and M. S. Schuman, Geochim. Cosmochim. Acta 52, 185–193 (1988).

    CAS  Google Scholar 

  12. 12.

    S. E. Cabaniss and M. S. Schuman, Geochim. Cosmochim. Acta 52, 195–200 (1988).

    CAS  Google Scholar 

  13. 13.

    E. M. Perdue and C. R. Lytle, in Aquatic and Terrestrial Humic Materials, edited by R. F. Christman and E. T. Gjessing (Ann Arbor Science, Ann Arbor, MI, 1983), pp. 295–313.

  14. 14.

    E. M. Perdue and C. R. Lytle, Environ. Sci. Technol. 17, 654–660 (1983).

    CAS  Article  Google Scholar 

  15. 15.

    J. C. M. De Wit, W. H. van Riemsdijk, M. M. Nederlof, D. G. Kinniburgh and L. K. Koopal, Anal. Chim. Acta 232, 189–207 (1990).

    Article  Google Scholar 

  16. 16.

    M. M. Nederlof, J. C. M. De Wit, W. H. van Riemsdijk, and L. K. Koopal, Environ. Sci. Technol. 27, 846–856 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    E. Tipping and M. A. Hurley, Geochim. Cosmochim. Acta 56, 3627–3641 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    E. Tipping, Environ. Sci. Technol. 27, 520–529 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    B. M. Bartschat, S. E. Cabaniss, and F.M.M. Morel, Environ. Sci. Technol. 26, 284–294 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    J. A. Davis and D. B. Kent in Mineral-Water Interface Chemistry, edited by M. F. Hochella and A. F. White (Reviews in Mineralogy 23, Mineralogical Society of America, Washington, DC, 1990), pp. 177–248.

  21. 21.

    W. Stumm, Chemistry of the Solid-Water Interface (Wiley, New York, 1992), Chapter 2.

    Google Scholar 

  22. 22.

    J. Westall and H. Hohl, Adv. Coll. Interfac. Sci. 12, 265–294 (1980).

    CAS  Google Scholar 

  23. 23.

    J. Westall in Chemical Processes at the Mineral Surfaces, edited by J. A. Davis and K. Hayes (ACS Symposium Series 323, American Chemical Society, Washington, DC, 1986), pp. 54–78.

  24. 24.

    D. A. Dzombak and F.M.M. Morel, Surface Complexation Modeling (Wiley, New York, 1990).

    Google Scholar 

  25. 25.

    K. S. Smith, “Factors Influencing Metal Sorption onto Iron-Rich Sediments in Acid-Mine Drainage,” PhD Thesis, Colorado School of Mines, Golden, CO, 1991.

    Google Scholar 

  26. 26.

    N. T. Loux, D. S. Brown, C. R. Chafin, J. D. Allison, and S. M. Hassan, Chemical Speciation and Bioavailability 1, 111–125 (1989).

    CAS  Google Scholar 

  27. 27.

    R. Parsons, J. Electroanal. Chem. 118, 3–18 (1980).

    Google Scholar 

  28. 28.

    S. Thomas and P.M.A. Sherwood, Anal. Chem. 64, 2488–2495 (1992).

    CAS  Google Scholar 

  29. 29.

    T. Hiemstra, J. C. M. De Wit, W. H. van Riemsdijk, J. Coll. Interface Sci. 133, 105–117 (1989).

    CAS  Google Scholar 

  30. 30.

    D. C. Grahame, Chem. Rev. 41, 441–501 (1947).

    CAS  Google Scholar 

  31. 31.

    A. J. Bard and L. R. Faulkner, Electrochemical Methods (Wiley, New York, 1980), Section 12.3.

    Google Scholar 

  32. 32.

    A. L. Herbelin and J. C. Westall, “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 3.1,” Report 94-01, Department of Chemistry, Oregon State University, Corvallis, OR, 1994.

    Google Scholar 

  33. 33.

    J. C. Westall, “FITEQL. A Computer Program for Determination of Chemical Equilibrium Constants, Version 2.1,” Report 82-02, Department of Chemistry, Oregon State University, Corvallis, OR, 1982.

    Google Scholar 

  34. 34.

    R. T. Pabalan and K. S. Pitzer, in Chemical Modeling of Aqueous Systems II, edited by D. C. Melchior and R. L. Bassett (ACS Symposium Series 416, American Chemical Society, Washington, DC, 1990), pp. 44–57.

    Google Scholar 

  35. 35.

    J. M. Zachara, C. T. Resch, and S. C. Smith, Geochim. Cosmochim. Acta 58, 553–566 (1993).

    Google Scholar 

  36. 36.

    J. C. Westall, J. D. Jones, G. D. Turner, and J. M. Zachara, Environ. Sci. Technol., in press.

  37. 37.

    P. W. Schindler, P. Liechti, and J. C. Westall, Neth. J. Agric. Sci. 35, 219–230 (1987).

    CAS  Google Scholar 

  38. 38.

    J. Wagner, J. C. Westall, and J. M. Zachara, manuscript in preparation, 1994.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John C. Westall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Westall, J.C. Modeling of the Association of Metal Ions with Heterogeneous Environmental Sorbents. MRS Online Proceedings Library 353, 937–950 (1994). https://doi.org/10.1557/PROC-353-937

Download citation