Significance of Electrostatic Sorption in the Retardation of Radionuclides Released from a Repository


Results of zeta potential measurements by electroosmosis with site-specific waters and sedimentary rocks from strata overlying the Gorleben salt dome are given and compared with sorption data of radionuclides obtained in batch experiments. It is shown that zeta potentials of sediment-groundwater systems in spite of being lower than the corresponding surface potentials are a sensitive indicator of interface reactions depending on the type of the sediment, ionic strength of waters, pH and temperature. Moreover, it is demonstrated that sorption data and, additionally, the influence of various parameters can often be understood by taking into account variable electrostatic forces between charged surfaces and nuclide species.

This is a preview of subscription content, access via your institution.


  1. 1.

    P.W. Schindler and W. Stumm, in Aquatic Surface Chemistry, edited by W. Stumm (Wiley-Interscience, New York, 1987), pp. 83–110.

  2. 2.

    D.A. Dzombak and F.M.M. Morel, Surface Complexation Modeling, Hydrous Ferric Oxide (Wiley-Interscience, New York, 1990).

    Google Scholar 

  3. 3.

    H. Meier, E. Zimmerhackl, G. Zeitler and P. Menge, Radiochim. Acta 52/53, 195–200 (1991).

    Article  Google Scholar 

  4. 4.

    E. Warnecke, G. Tittel, P. Brenecke, G. Stier-Friedland and A. Hollmann, in IAEA-SM- 289/49, 1986, p.401.

    Google Scholar 

  5. 5.

    K.E. Maas and E. Huf (eds.), Proc. U.S./FRG Bilateral Workshop, Oct. 25, 1982 (Projektstab PSE, HMI Berlin, 1983).

    Google Scholar 

  6. 6.

    H. Meier, E. Zimmerhackl, W. Hecker, G. Zeitler and P. Menge, Radiochim. Acta 44/45, 239–244 (1988).

    Article  Google Scholar 

  7. 7.

    H. Meier, E. Zimmerhackl, G. Zeitler, P. Menge and W. Albrecht, Radiochim. Acta 58/59, 341–346 (1992).

    Article  Google Scholar 

  8. 8.

    W. Stumm, Chemistry of the Solid-Water Interface (Wiley-Interscience, New York, 1992).

    Google Scholar 

  9. 9.

    B. Wehrli, S. Ibric and W. Stumm, Colloids and Surfaces 51, 77–88 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    D.F. Evans and H. Wennerström, The Colloidal Domain (VCH Verlagsgesellschaft, Weinheim, FRG, 1994), p. 117.

    Google Scholar 

  11. 11.

    C.J. Chisholm-Brause, G.E. Brown and G.A. Parks; Physica B 158, 646–648 (1989).

    CAS  Article  Google Scholar 

  12. 12.

    R.J. Serne. in Radionuclide Sorption for the Safety Evaluation Perspective (Proc. NEA Workshop, Interlaken, Oct. 16-18, 1991) p. 237.

    Google Scholar 

  13. 13.

    Y. Legoux, G. Blain, R. Guillaumont, G. Ouzounian, L. Brillard and M. Hussonois, Radiochim. Acta 58/59, 211 (1992).

    Article  Google Scholar 

  14. 14.

    R.J. Serne and J.F. Relyea, The Status of Radionuclide Sorption-Desorption Studies Performed by the WRIT Program (PNL-3997.UC-70, April 1982).

    Google Scholar 

  15. 15.

    M.H. Kurbatov, G.B. Wood and J.D. Kurbatov, J.Phys.Chem. 55, 1170–1182 (1951).

    CAS  Article  Google Scholar 

  16. 16.

    A.R. Bowers and C.P. Huang, J Colloid Interface Sci. 110, 575 (1986).

    CAS  Article  Google Scholar 

  17. 17.

    H. Meier, E. Zimmerhackl, G. Zeitler and P. Menge, presented at the 4th International Conference “Migration ’93”, Charleston, SC, 1993 (unpublished).

Download references

Author information



Corresponding author

Correspondence to H. Meier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meier, H., Zimmerhackl, E., Zeitler, G. et al. Significance of Electrostatic Sorption in the Retardation of Radionuclides Released from a Repository. MRS Online Proceedings Library 353, 1061–1068 (1994).

Download citation