High Yield Polycarbosilane Precursors to Stoichiometric SiC. Synthesis, Pyrolysis and Application


The synthesis and properties of two polycarbosilanes that have essentially a “SiH2CH2” composition is described. One of these polymers is a highly branched hydridopolycarbosilane (HPCS) derived from Grignard coupling of CI3SiCH2CI followed by LiAIH4 reduction. This synthesis is amenable to large scale production and we are exploring applications of HPCS as a source of SiC coatings and its allyl-derivative, AHPCS, as a matrix source for SiC- and C-fiber-reinforced composites. These polymers thermoset on heating at 200–400 °C (or at 100 °C with a catalyst) and give near stoichiometric SiC with low O content in ca. 80% yield on pyrolysis to 1000 °C. The second method involves ring-opening polymerization of 1,1,3,3-tetrachlorodisilacyclobutane and yields a high molecular weight, linear polymer that can be reduced to [SiH2CH2]n (PSE), the monosilicon analog of polyethylene. In contrast to high density polyethylene which melts at 135 °C, PSE is a liquid at room temperature which crystallizes at ca. 5 °C. On pyrolysis to 1000 °C, PSE gives stoichiometric, nanocrystalline, SiC in virtually quantitative yield. The polymer-to-ceramic conversion was examined for PSE by using TGA, mass spec, solid state NMR, and IR methods yielding information regarding the cross-linking and structural evolution processes. The results of these studies of the polymer-to-ceramic conversion process and our efforts to employ the AHPCS polymer as a source of SiC matrices are described.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Yajima, K. Okamura, J. Hayashi, and M. Imura, J. Amer. Ceram. Soc. 59[7–8] 324 (1976)

    CAS  Article  Google Scholar 

  2. 1a

    S. Yajima, Y. Hasegwa, J. Hayashi, and M. Omori, J. Mater. Sci. 13[12] 2569 (1978)

    CAS  Google Scholar 

  3. 1b.

    S. Yajima, “Silicon Carbide Fibers”, pp.201–37, in Handbook of Composites, edited by W. Watt and B.V. Perov, North-Holland, Amsterdam, Netherlands, (1985).

    Google Scholar 

  4. [2]

    K.J. Wynne and R.W. Rice, Ann. Rev. Mater. Sci., 14, 297 (1984)

    CAS  Article  Google Scholar 

  5. 2a.

    R.M. Laine and F. Babonneau, Chem. Mater. 5, 260 (1993).

    CAS  Article  Google Scholar 

  6. [3]

    K. Okamura, “Ceramic Fiber and Whisker Requirements to Advanced Structural Inorganic Composite”, pp.19–34 in Advanced Structural Composites, edited by P. Vicenzini, Elsevier Science Publ. B.V., Amsterdam (1991)

    Google Scholar 

  7. 3a.

    J. Lipowitz, Am. Ceram. Soc. Bull. 70[12], 1888 (1991)

    CAS  Google Scholar 

  8. 3b.

    T.F. Cooke, J. Amer. Ceram. Soc., 74[12] 2959 (1991).

    CAS  Article  Google Scholar 

  9. [4]

    F.I. Hurwitz, L. Hyatt, J. Gorecki, and L. D’Amore, Ceram. Eng. Sci. Proc. 8, 732 (1987)

    CAS  Article  Google Scholar 

  10. 4a.

    F.I. Hurwitz, J.Z. Gyekenyesi, and P.J. Conroy, Ceram. Eng. Sci. Proc. 10, 750 (1989)

    CAS  Article  Google Scholar 

  11. 4b.

    H. Zhang, C.G. Pantano, pp. 223-, in Ultrastructure Processing of Advanced Materials, D.R. Uhlmann and D.R. Ulrich, Eds., John Wiley & Sons (1992).

  12. [5]

    M.P. Borom, W.B. Hillig, R.J. Singh, W.A. Morrison, and L.V. Interrante, “Fiber-Containing Composite”, US Patent No. 5 015 540 (14 May 1991).

    Google Scholar 

  13. [6]

    R. Naslain and F. Langlais, MRS Sympos. Proc. 20, 145 (1985)

    Google Scholar 

  14. 6a.

    P.J. Lamicq, G.Q. Bernhart, M.M. Dauchier, and J.C. Mace, Am. Ceram. Soc. Bull. 65[2], 336 (1986)

    CAS  Google Scholar 

  15. 6b.

    A.J. Caputo, D.P. Stinton, R.A. Lowden, and T.M. Bessman, Am. Ceram. Soc. Bull. 66[2], 368 (1987)

    CAS  Google Scholar 

  16. 6c.

    T.M. Bessman, R.A. Lowden, D.P. Stinton, T.L. Starr, J. de Physique, Colloque C5, 229 (1989).

    Google Scholar 

  17. [7]

    W. Fohey, M. Battison, J. Halada, and T. Nielson, U.S. Government Report No. WL-TR-92-4019, July 1992.

    Google Scholar 

  18. [8]

    J.R. Strife, J.P. Wesson, and H.H. Streckert, “A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers”, US Government Report No. AD-A23 686, December 1990

    Google Scholar 

  19. 8a.

    B.C. Mutsuddy, Ceramics International 13, 41 (1987)

    CAS  Article  Google Scholar 

  20. 8b.

    R.P. Boisvert, “Ceramic Matrix Composites via Organometallic Precursors”, M.S. Thesis, Rensselaer Polytechnic Institute, 214 pages (1988).

    Google Scholar 

  21. [9]

    H-J. Wu and L.V. Interrante, Macromolecules 25, 1840 (1992)

    CAS  Article  Google Scholar 

  22. 9a.

    H.-J. Wu and L.V. Interrante, Polymer Preprints 33[2], 210 (1992).

    CAS  Google Scholar 

  23. [10]

    C.K. Whitmarsh, L.V. Interrante, Organometallics 10, 1336 (1991)

    CAS  Article  Google Scholar 

  24. 10a.

    C.K. Whitmarsh, L.V. Interrante, “Carbosilane Polymer Precursors to Silicon Carbide Ceramics”, U.S. Patent No. 5 153 295 (6 October 1992);.

    Google Scholar 

  25. [11]

    C-Y. Yang and L.V. Interrante, Polymer Preprints 33 [2], 152 (1992).

    CAS  Google Scholar 

  26. [12]

    W.R. Schmidt, V. Sukumar, W.J. Hurley Jr., R. Garcia, R.H. Doremus, and L.V. Interrante, J. Amer. Ceram. Soc. 73, 2412 (1990)

    CAS  Article  Google Scholar 

  27. 12a

    W.R. Schmidt, L.V. Interrante, R.H. Doremus, T.K. Trout, P.S. Marchetti, and G.E. Maciel, Chem. Mater. 3, 257 (1991)

    CAS  Article  Google Scholar 

  28. 12b

    L.V. Interrante, W.R. Schmidt, P.S. Marchetti, and Gary E. Maciel, MRS Symp. Proc. 249, 31 (1992)

    CAS  Article  Google Scholar 

  29. 12c

    W.R. Schmidt, P.S. Marchetti, L.V. Interrante, W.J. Hurley, Jr., R.H. Lewis, R.H. Doremus, and G.E. Maciel, Chem. Mater. 4, 937 (1992)

    CAS  Article  Google Scholar 

  30. 12d

    L.V. Interrante, C.K. Whitmarsh, T.K. Trout, and W.R. Schmidt, “Synthesis and Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3N4”, pp. 243–254 in Organometallic Polymers with Special Properties, NATO ASI Series, Series E, Applied Sciences, Vol. 206, Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  31. 12e

    L.V. Interrante, W.R. Schmidt, P.S. Marchetti, and Gary E. Maciel, MRS Symp. Proc. 271, 739 (1992).

    CAS  Article  Google Scholar 

  32. [13]

    D.M. Narsavage, L.V. Interrante, P.S. Marchetti, and G. Maciel, Chem. Mater. 3, 721 (1991).

    CAS  Article  Google Scholar 

  33. [14]

    L.V. Interrante, C.L. Czekaj, M.L. Hackney, G.A. Sigel, P.L. Shields and G.A. Slack, MRS Sympos. Proc. 121, 465 (1988)

    CAS  Article  Google Scholar 

  34. 14a

    Czekaj, CL.; Hackney, M.L.; Hurley, W.J., Jr.; Interrante, L.V.; Sigel, G.A.; J. Am. Ceram. Soc. 73, 352 (1990)

    CAS  Article  Google Scholar 

  35. 14b

    W.R. Schmidt, W.J. Hurley, Jr., V. Sukumar, R.H. Doremus, and L.V. Interrante, MRS Sympos. Proc. 171, 79 (1990)

    CAS  Article  Google Scholar 

  36. 14c

    L.V. Interrante, W.J. Hurley, Jr., W.R. Schmidt, D. Kwon, R.H. Doremus, P.S. Marchetti, and G. Maciel, Ceram. Trans. 19, 3 (1991)

    CAS  Google Scholar 

  37. 14d

    W.R. Schmidt, W.J. Hurley, Jr., R.H. Doremus, L.V. Interrante, and P.S. Marchetti, Ceram. Trans. 19, 19 (1991)

    CAS  Google Scholar 

  38. 14e

    L.V. Interrante, W.R. Schmidt, S.N. Shaikh, R. Garcia, P.S. Marchetti, and G. Maciel, pp. 777–787 in “Chemical Processing of Advanced Materials”, Vol. 206, Series E: Applied Sciences, L.L. Hench and J.K. West, eds., J. Wiley and Sons (1992).

    Google Scholar 

  39. [15]

    Elemental analysis of the 1000 °C HPCS-SiC gave the following results: %C, 27.9; %H, 0.7; %Si, 63.1; %0, 3.49.

  40. [16]

    Unpublished work of W. Shi, C.-Y. Yang, and L.V. Interrante, Rensselaer Polytechnic Institute.

  41. [17]

    C-Y. Yang, P. Marchetti, and L.V. Interrante, Polymer Preprints 33 (2), 208 (1992); F. Babonneau, L. Bois, C-Y. Yang, and L.V. Interrante, Chem. Mater. 6, 51 (1994).

    CAS  Google Scholar 

  42. [18]

    “Encyclopedia of Polymer Science and Engineering”, Volume 6, John Wiley & Sons, New York (1986).

  43. [19]

    Dr. Kennith Smith, GE CRD (private communication).

  44. [20]

    I.M. Davidson, M.A. Ring, J. Chem. Soc, Faraday Trans. 76, 1520 (1980)

    CAS  Article  Google Scholar 

  45. 20a.

    M.A. Ring, H.E. O’Neal, S.F. Rickborn, B.A. Sawray, Organometallics 2, 1891 (1983).

    CAS  Article  Google Scholar 

  46. [21]

    J. Harrod, R. Laine, et al, J. Amer. Ceram. Soc. 74, 670 (1991).

    Article  Google Scholar 

  47. [22]

    The % theoretical density was calculated from the rule of mixtures, using the relative weights and the published density values for the Nicalon fiber cloth. A value of 2.35g/cm3 was used for the AHPCS-SiC matrix material. This was obtained by direct measurement on a densified pellet of 1000 °C AHPCS-SiC The pellet was prepared by VPIP (8 cycles) starting from a preform derived by hot-pressing (200 °C; 360 kg/cm2) a mixture of finely-ground 1000 °C AHPCS-SiC powder and HPCS as a binder in a pellet press.

  48. [23]

    duPont de Nemours & Co., Wilmington, DE, Product Data Sheet.

Download references

Author information



Corresponding author

Correspondence to Leonard V. Interrante.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Interrante, L.V., Whitmarsh, C.W., Sherwood, W. et al. High Yield Polycarbosilane Precursors to Stoichiometric SiC. Synthesis, Pyrolysis and Application. MRS Online Proceedings Library 346, 593–603 (1994). https://doi.org/10.1557/PROC-346-595

Download citation