Kinetics of Hydrogen Evolution and Crystallization in Hydrogenated Amorphous Silicon Films Studied by Thermal Analysis and Raman Scattering


We observed the processes of hydrogen evolution and crystallization in hydrogenated amorphous silicon 0.5–7 µm thick films (deposited by de glow discharge on molybdenum) by differential scanning calorimetry (DSC), Raman scattering and thermogravimetric analysis (TGA). Investigation was made as a function of doping, deposition temperature and film thickness. For all the films, an endothermic DSC peak was observed at 694 °C (onset). That this peak was at least partly due to hydrogen evolution was shown by TGA, which showed weight loss beginning at 694 °C, and by evolved gas analysis, which showed hydrogen evolution at 694 °C. This temperature (658–704 °C) increased with increasing heating rate (5–30 °C/min). Doping reduced this temperature from 694 to 625 °C for boron doping and to 675 °C for phosphorous doping. Hydrogen evolution kinetics and FTIR results suggest that the silicon-hydrogen bonding in the intrinsic film was a mixture of SiH and SiH2, and was predominantly SiH in the phosphorous doped films and SiH2 in the boron doped films. Crystallization was independent of silicon-hydrogen bonding in the as-deposited amorphous silicon film. It was bulk (not interface) induced. No exothermic DSC peak accompanied the crystallization. The film deposition temperature had little effect on the DSC result, but crystallization was enhanced by a higher deposition temperature.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    D. E. Carlson, J. Non-Cryst. Solids 35–36, 707 (1980).

    Article  Google Scholar 

  3. 3.

    D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 39, 292 (1977).

    Article  Google Scholar 

  4. 4.

    H. S. Yoon, C. S. Park and Sin-Chong Park, J. Vac. Sci. Technol. A 4(6), 3095 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    M. K. Hatalis and D. Greve, J. Appl. Phys. 63, 2260 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    R. A. Street, Hydrogenated Amorphous silicon (Cambridge University Press, Cambridge, 1991) and references cited in.

    Google Scholar 

  7. 7.

    W. C. Sinke, T. Warabisako, M. Miyao, T. Tokuyama, S. Roorda and F. W. Saris, J. Non-Cryst. Solids 99, 308 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    W. Paul, A. J. Lewis, G. A. N. Connell and T. D. Moustakas, Solid State Comm. 20, 969 (1976).

    CAS  Article  Google Scholar 

  9. 9.

    W. Beyer, H. Wagner and H. Meli, Solid State Comm. 39, 375 (1981).

    CAS  Article  Google Scholar 

  10. 10.

    M. Kumeda, H. Komatsu and T. Shimizu, Thin Solid Films 129, 227 (1985).

    CAS  Article  Google Scholar 

  11. 11.

    L. Battezzatti, F. Demichelis, C. F. Pirri, A. Tagliaferro and E. Tresso, J. Non-Cryst. Solids 137 & 138, 87 (1991).

    Article  Google Scholar 

  12. 12.

    L. Battezzatti, F. Demichelis, C. F. Pirri and E. Tresso, Physica B 176, 73 (1992).

    Article  Google Scholar 

  13. 13.

    W. Beyer and H. Wagner, J. Appl. Phys. 53, 8745 (1982).

    CAS  Article  Google Scholar 

  14. 14.

    D. K. Beigelson, R. A. Street, C. C. Tsai and J. C. Knights, Phys. Rev. B 20, 4839 (1979).

    Article  Google Scholar 

  15. 15.

    CRC Handbook of Chemistry and Physics (CRC, West Palm Beach, FL, 1977).

  16. 16.

    J. A. Roth, G. L. Olson, D. C. Jacobson and J. M. Poate, Mat. Res. Symp. Proc. 297 (1993).

  17. 17.

    G. L. Olson and J. A. Roth, Mater. Sci. Rep. 3, 1 (1988).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Masaki, P. G. LeComber and A. G. Fitzgerald, J. Appl. Phys. 74, 129 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    C. Licoppe and Y. I. Nissim, J. Appl. Phys. 59, 432 (1986).

    CAS  Article  Google Scholar 

  20. 20.

    K. Zellama, S. Squelard, J. Magarino and D. Kaplan, J. Non-Cryst. Solids 59 & 60, 807 (1983).

    Article  Google Scholar 

  21. 21.

    J. Magarino, D. Kaplan, A. Friederich and A. Deneuville, Phil. Mag. 45, 285 (1980).

    Article  Google Scholar 

  22. 22.

    J. C. Chou, S. K. Hsiung and C. Y. Lu, Jpn. J. Appl. Phys. 26, 1971 (1989).

    Article  Google Scholar 

  23. 23.

    J. C. C. Fan and C. H. Anderson, Jr., J. Appl. Phys. 52, 4003 (1981).

    CAS  Article  Google Scholar 

  24. 24.

    E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate and D. C. Jacobson, J. Appl. Phys. 57, 1795 (1985).

    CAS  Article  Google Scholar 

  25. 25.

    S. Hasegawa, S. Sakamoto, T. Inokuma and Y. Kurata, Appl. Phys. Lett. 62, 1218 (1993).

    CAS  Article  Google Scholar 

  26. 26.

    S. Roorda, D. Kammann, W. C. Sinke, G. F. A. Van de Walle and A. A. Van Gorkum, Mater. Lett. 9, 259 (1990).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge financial support from National Renewable Energy Laboratory.

Author information



Corresponding author

Correspondence to Nagarajan Sridhar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sridhar, N., Chung, D.D.L., Anderson, W.A. et al. Kinetics of Hydrogen Evolution and Crystallization in Hydrogenated Amorphous Silicon Films Studied by Thermal Analysis and Raman Scattering. MRS Online Proceedings Library 321, 713–718 (1993).

Download citation