Electrical Transport Properties of Cu3Ge thin films


We present results of electrical transport studies performed on thin films of ε1-Cu3Ge in the temperature range 4.2 - 300 K. It is found that ε1-Cu3Ge which has a long-range ordered monoclinic crystal structure, exhibits a remarkably low metallic resistivity of ~ 6 μΩ cm at room temperature. The density of charge carriers, which are predominantly holes, is ~ 8 × 1022/cm3 and is independent of temperature and film thickness. The Hall mobility at 4.2 K is ~ 132 cm2/V s, considerably higher than in pure copper. The elastic mean free path is found to be ~ 1200Å, which is surprisingly large for a metallic compound film. The results show that the residual resistivity is dominated by surface scattering rather than grain-boundary scattering. It is also found that by varying the Ge concentration from 0 to 40 at. % the resistivity exhibits anomalous behavior. This behavior is correlated with changes observed in the crystal structure of the thin-film alloys as the Ge concentration is increased. The resistivity remains close to that of the ε1-Cu3Ge phase over a range of Ge concentration which extends from 25 to 35 at. %.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. Nava, K. N. Tu, O. Thomas, J. P. Senateur, R. Madar, A. Borghesi, G. Guizzetti, O. Laborde, and O. Bisi, Mater. Sci. Rep. 9, 141 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    Y. J. Chabal, D. R. Hamann, J. E. Rowe. and M. Schluter, Phys. Rev. B, 25, 7598 (1982).

    CAS  Article  Google Scholar 

  3. 3.

    L. Krusin-Elbaum and M. O. Aboelfotoh, Appl. Phys. Lett. 58, 1341 (1991): M. O. Aboelfotoh and L. Krusin-Elbaum, J. Appl. Phys. 70, 3382 (1991).

    CAS  Article  Google Scholar 

  4. 4.

    J. C. Hensel, R. T. Tung, J. M. Poate, and F. C. Unterwald, Appl. Phys. Lett. 44, 913 (1984); Phys. Rev. Lett. 54, 1840 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    J. I. Goldstein, D. B. Williams, and G. Cliff, in Principles of Analytical Electron Microscopy, edited by D. C. Joy, A. D. Roming, and J. I. Goldstein (Plenum Press, New York, 1986), p.155.

  6. 6.

    L. J. Van der Pauw, Philips Res. Rep. B, 13. 1 (1957).

    Google Scholar 

  7. 7.

    Standard Power Diffraction Pattern #6 693.

  8. 8.

    M. O. Aboelfotoh and H. M. Tawancy. J. Appl. Phys. (to be published).

  9. 9.

    See for example, J. M. Ziman, Principles of the Theory of Solids (Cambridge University, Cambridge, 1972).

    Google Scholar 

  10. 10.

    M. O. Aboelfotoh, H. M. Tawancy and L. Krusin-Elbaun, Appl. Phys. Lett. 63, 1622 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    L. Krusin-Elbaum, J. Y.-C. Sun, and C.-Y. Ting, IEEE Trans. Electron Devices ED-34, 58 (1987); L. Krusin-Elbaum, M. Wittmer, and D. S. Yee, Appl. Phys. Lett. 50, 1879 (1987).

    CAS  Article  Google Scholar 

  12. 12.

    K. Fuchs, Cambridge Philos. Soc. 34, 100 (1938).

    CAS  Article  Google Scholar 

  13. 13.

    E. H. Sondheimer, Adv. Phys. 1.1 (1952).

    Google Scholar 

  14. 14.

    C. S. Barrett and T. B. Massalski, Structure of Metals (McGraw Hill, New York, 1966), p. 358.

    Google Scholar 

  15. 15.

    P. R. Swan, in Electron Microscopy and Strenght of Crystals, edited by G. Thomas and J. Washburn (Wiley Interscience, New York, 1963), p. 131.

  16. 16.

    N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publications, New York, 1958), p. 292.

    Google Scholar 

Download references


The author would like to thank J. Doyle for assistance in preparing the Cu-Ge thin-film alloys and L. Krusin-Elbaum and F. Nava for many illuminating discussions.

Author information



Corresponding author

Correspondence to M.O. Aboelfotoh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aboelfotoh, M. Electrical Transport Properties of Cu3Ge thin films. MRS Online Proceedings Library 320, 269–280 (1993). https://doi.org/10.1557/PROC-320-269

Download citation