Avoiding Ceramic Problems by the Use of Chemical Techniques

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Processing of Crystalline Ceramics, 14th University Conference, Eds. H. Palmour III, R. F. Davis, I. M. Hare, Plenum Press (1978).

  2. 2.

    F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc. 67, 83 (1984).

    CAS  Article  Google Scholar 

  3. 3.

    C. Greskovitch and K. W. Lay, “Grain Growth in Very Porous Al2O3 Compacts,” J. Am. Ceram. Soc. 55, 142 (1972).

    Article  Google Scholar 

  4. 4.

    M. Q. Li and G. L. Messing, “Chloride Salt Effects on the Decomposition of Dolomite,” Thermochim. Acta. 68, 1 (1983).

    CAS  Article  Google Scholar 

  5. 5.

    U. Chowdhry and R. M. Cannon, “Microstructural Evolution during the Processing of Sodium β-alumina,” Processing of Crystalline Ceramics, Eds., H. Palmour III. R. F. Davis, and T. M. Hare (Plenum Press) (1978), 443.

  6. 6.

    P. F. Becker, J. H. Sommers, B. A. Bender and B.A. MacFarlane, “Ceramics Sintered Directly From Sol-Gels,” ibid, 79.

  7. 7.

    M. L. Huckabee, T. M. Hare and H. Palmour III, “Rate Controlled Sintering as a Processing Method,” ibid, 205.

  8. 8. (a)

    R. Pampuch, “Contribution au Problem du Frittage Oxydes Purs avec Additions.” Bull. Soc. Franc. Ceram. 46, 3 (1960).

    Google Scholar 

  9. 8. (b)

    R. Pampuch, “Sinterung Reiner Sowie Aktivierter Oxyde in Festen Zustand,” Silika-Techn. 10, 69 (1969).

    Google Scholar 

  10. 9.

    P. E. D. Morgan, “The Sintering of Zinc and Cadmium Sulfides,” Proc. Intl. Conf. Sintering and Related Phenomena, Notre Dame, ind., 543, June (1965) Gordon and Breach, (1967) Ed., G.C. Kuczynski.

  11. 10.

    D. T. Livey, B. M. Wanklin, M. Hewitt and P. Murray, “The Properties of MgO Powders Prepared by the Decomposition of Mg(OH)2,” Trans. Brit. Ceram. Soc. 56, 217 (1957).

    CAS  Google Scholar 

  12. 11.

    J. F. Quirk, “Factors Affecting Sinterability of Oxide Powders,” J. Am. Ceram. Soc. 42, 178 (1959).

    CAS  Article  Google Scholar 

  13. 12.

    K. D. Reeve, “Nonuniform Shrinkage in Sintering,” Am. Ceram. Soc. Bull., 42, 452 (1963).

    CAS  Google Scholar 

  14. 13.

    T. Vasilos and W. Rhodes, “Fine Particulates to ultrafine-grain Ceramics,” 137, in Ultrafine-Grain Ceramics, J. J. Burke, N. L. Reed, and V. Weiss (Eds.), Syracuse Univ. Press (1970).

  15. 14.

    W. H. Rhodes, “Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Amer. Ceram. Soc. 64, 19 (1981).

    CAS  Article  Google Scholar 

  16. 15.

    P. E. D. Morgan and E. Scala, “Fully Dense Oxides by the pressure Calcintering of Hydroxides,” Intl. Conf. on Sintering and Related Phenomena, Notre Dame, Ind., June (1965), Gordon and Breach, 861 (1967), Ed., G. C. Kuczynski.

  17. 16.

    B. J. Kellett and F. F. Lange, “Stresses Induced by Differential Sintering in Powder Compacts,” in press, J. Am. Ceram. Soc.

  18. 17.

    P. E. D. Morgan, “Superplasticity in Ceramics,” Ultrafine Grain Ceramics, Ed., J. J. Burke, N. L. Reed, V. Weiss, Syracuse University Press, 251 (1970).

  19. 18.

    P. E. D. Morgan and N. C. Schaeffer, “Chemically Activated Pressure Sintering of Oxides,” Technical Report AFML-TR-66-356, NTIS-AD-815066, Feb. (1967).

  20. 19.

    J. H. Hensler and G. V. Cullen, “Grain shape Changes During Creep in Magnesium Oxide,” J. Am. Ceram. Soc. 50, 584 (1967).

    CAS  Article  Google Scholar 

  21. 20.

    Unpublished work in progress.

  22. 21.

    F. F. Lange and B. I. Davis, “Sinterability of ZrO2 and Al2O3 Powders: The Role of pore Coordination Number Distribution,” in press, J. Am. Ceram. Soc.

  23. 22.

    P. E. D. Morgan, “Chemical Processing of Ceramics (and Polymers),” 14th University Conference, processing of Crystalline Ceramics, Eds. H. Palmour III, R. F. Davis, I. M. Hare, Plenum Press (1978).

  24. 23.

    S. prochazka, “Optically Translucent Ceramics,” U.S. patent No. 4,427,785, Jan. (1984).

  25. 24.

    P. E. D. Morgan, “Sintering and Grain Growth in Metal Oxide powder Compacts,” Ph.D. Thesis, London University (1963).

  26. 25.

    P. E. D. Morgan and J. E. Flintoff, unpublished work.

  27. 26.

    T. Kimura and T. Yamaguchi, “Morphology of Bi2WO6 Powders Obtained in the Presence of Fused Salts,” J. Matl. Sci. 17, 1863 (1982).

    CAS  Article  Google Scholar 

  28. 27.

    P. E. D. Morgan, “Preparation and Electric Field Alignment of Sbsi Crystals,” Comm. Am. Ceram. Soc. C82 (1982).

  29. 28.

    M. A. Leitheiser and H. G. Sowman, “Non-Fused Aluminum Oxide-Based Abrasive Material, U.S. Patent No. 4,314,827 (1982).

  30. 29.

    T. Iwai and T. Kawahito work, “Process for producing Metallic Nitride Powders,” U.S. Patent No. 4,196,178, April 1 (1980).

  31. 30.

    R. C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem. 69, 1238 (1965).

    CAS  Article  Google Scholar 

  32. 31.

    A. Clearfield, “Crystalline Hydrous Zirconia,” inorg. Chem. 3, 146 (1964).

    CAS  Article  Google Scholar 

  33. 32.

    P. E. D. Morgan, “Preparing New Extremely Difficult to Form Crystal Structures,” Mat. Res. Bull. 369 (1984).

  34. 33.

    P. E. D. Morgan and E. A. Pugar, “New Compounds and Phase Relations, Implications for Refractory Inclusions in Meteorites,” Lunar and Planetary Science XV, 566 (1984).

    Google Scholar 

  35. 34.

    M. P. Schutzenberger, Sur l’azoture de silicum, Compte Rendus, Académie des Sciences, Paris, 89, 644 (1879).

    Google Scholar 

  36. 35.

    M. Blix and W. Wirbelauer, “Ueber das Siliciumsulfochlorid SiSCl2, Siliciumimid, Si(NH)2, Siliciumstickstoffimid (Silicam), Si2NH3H und den Siliciumstickstof f, Si3N4,” Ber. 36, 4220 (1903).

    CAS  Article  Google Scholar 

  37. 36.

    M. Billy, M. Brossard, J. Desmaison, D. Giraud and P. Goursat, “Synthesis of Si and Ge Nitrides and Si Oxynitride by Ammonolysis of Chlorides”, J. Am. Ceram. Soc. 58, 254 (1975).

    CAS  Article  Google Scholar 

  38. 37.

    K. S. Mazdiyasni, “Synthesis, Characterization, and Consolidation of Si3N4 Obtained from Ammonolysis of SiCl4,” J. Am. Ceram. Soc. 56, 628 (1973).

    CAS  Article  Google Scholar 

  39. 38. (a)

    P. E. D. Morgan, “Research on Densification, Character, and Properties of Dense Silicon Nitride,” Office of Naval Research, AD-757, 748, March (1973).

    Google Scholar 

  40. 38. (b)

    P. E. D. Morgan, “Production and formation of Si3N4 from Precursor Materials,” Office of Naval Research, AD-778, 373, Dec. (1973).

    Google Scholar 

  41. 39.

    D. R. Clarke, “Densification of Silicon Nitride: Effect of Chlorine Impurities,” J. Am. Ceram. Soc. 65, C21 (1982).

    CAS  Article  Google Scholar 

  42. 40.

    R. Raj and P. E. D. Morgan, “Activation Energies for Densification, Creep and Grain Boundary Sliding in Nitrogen Ceramics,” J. Am. Ceram. Soc. 64, C143 (1981).

    CAS  Article  Google Scholar 

  43. 41.

    A. S. Berezhnoi, Silicon and Its Binary Systems, translated from Russian, Consultants Bureau (1960).

  44. 42.

    P. E. D. Morgan, “The α/β-Si3N4 Question,” J. Mat. Sci. 15, 791 (1980).

    CAS  Article  Google Scholar 

  45. 43.

    H. Inoue, K. Komeya and A. Tsuge, “Synthesis of Silicon Nitride Powder from Silica Reduction,” Comm. Am. Ceram. Soc. C205 (1982).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter E. D. Morgan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgan, P.E.D. Avoiding Ceramic Problems by the Use of Chemical Techniques. MRS Online Proceedings Library 32, 213 (1984). https://doi.org/10.1557/PROC-32-213

Download citation