On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation


The growth of ultra-thin oxide films by the thermal oxidation of silicon has been studied by low and medium energy ion scattering spectroscopies (LEIS and MEIS) and X-ray photoelectron spectroscopy (XPS). To help elucidate the diffusional and mechanistic aspects of oxide growth we have used sequential isotope oxidation (18O2 followed by 16O2). LEIS demonstrates that both 18O and 16O atoms are on the silicon surface under our growth conditions. MEIS also distinguishes 18O from 16O and gives a depth distribution for both with high accuracy. Our results show that several key aspects of the Deal-Grove model (oxygen diffusion to the Si-SiO2 interface and oxide formation at the interface) are consistent with our results for 50Å films. For very thin oxide films (15Å or less), we found a mixed isotopic distribution in the film, demonstrating more complex oxidation behavior.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. Bait. The Si-SiO2 System (North-Holland, Amsterdam, 1988).

    Google Scholar 

  2. 2.

    T. Engel, Surf. Sci. Rept. 18, 91 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    E. Irene, CRC Crit. Rev. Sol. St. Mat. Sci. 14, 175 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    G. Lucovsky, J. F. Fitch, E. Kobeda, and E. Irene, in The Physics and Chemistry of SiO2 and the Si-SiO2 interface (eds. C.R. Helms and D.E. Deal) p. 139 (Plenum Press, NY, 1988).

  5. 5.

    N. F. Mott, S. Rigo, F. Rochet, and A. M. Stoneham, Phil. Mag. B 60, 189 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    CAS  Article  Google Scholar 

  7. 7.

    According to some recent results this deviation may be caused by the limited accuracy of ellipsometry for thin silica films (T. Dutta and N.M. Ravindra, Phys. Stat. Sol. A134, 447, 1992; S.C. Kao, and R.H. Doremus, in The Physics and Chemistry of SiÖ2 and Si-SiO2 Interface, C.R. Helms and B.E. Deal, eds., Plenum Press, N.Y., 1993, p.23).

    Article  Google Scholar 

  8. 8.

    M. A. Hoppers, R. A. Clarke, and L. Young, J. Electrochem. Soc. 122, 1216 (1975).

    Article  Google Scholar 

  9. 9.

    C. J. Han and C. R. Helms, J. Electrochem. Soc. 135, 1824 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    J. M. Delarious, G R. Helms, D. B. Kao, and B. E. Deal, Appl. Surf. Sci. 39, 89 (1989).

    Article  Google Scholar 

  11. 11.

    A. G. Revesz and H. L. Hughes, J. Non-Cr. Solids 71, 87 (1985).

    CAS  Article  Google Scholar 

  12. 12.

    E. A. Irene, J. Appl. Phys. 54, 5416 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    S. Kamohara and Y. Kamigaki, J. Appl. Phys. 69, 7871 (1991).

    CAS  Article  Google Scholar 

  14. 14.

    C H. Bjorkman, J. T. Fitch, and G. Lucovsky, Appl. Phys. Lett. 56, 1983 (1990).

    CAS  Article  Google Scholar 

  15. 15.

    B. Leroy, Phil. Mag. B 55, 159 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    T. Tamura, N. Tanaka, M. Tagawa, N. Ohmae, and M. Umeno, Jpn. J. Appl. Phys. 32, 12 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    D. R. Wolters and A. T. A. Zegers-van Duynhoven, Appl. Surf. Sci. 39, 81 (1989).

    CAS  Article  Google Scholar 

  18. 18.

    J. K. Srivastava, M. Prasad, and J. B. Wagner-Jr, J. Electrochem. Soc. 132, 955 (1985).

    CAS  Article  Google Scholar 

  19. 19.

    A. Atkinson, Rev. Mod. Phys. 57, 437 (1985).

    CAS  Article  Google Scholar 

  20. 20.

    H. Z. Massoud, J. D. Plummer, and E. A. Irene, J. Electrochem. Soc. 132, 2693 (1985).

    CAS  Article  Google Scholar 

  21. 21.

    R. Ghez and Y. J. van der Meulen, J. Electrochem. Soc 119, 1100 (1972).

    CAS  Article  Google Scholar 

  22. 22.

    S. S. Moharir and A. N. Chandorkar, J. Appl. Phys. 65, 2171 (1989).

    CAS  Article  Google Scholar 

  23. 23.

    S. A. Schafer and S. A. Lyon, Appl. Phys. Lett. 47, 154 (1985).

    CAS  Article  Google Scholar 

  24. 24.

    A. M. Stoneham, C. R. M. Grovenor, and A. Cerezo, Phil. Mag. B 55, 201 (1987).

    CAS  Article  Google Scholar 

  25. 25.

    P. H. Fouss, H. J. Norton, S. Brennan, and A. Fisher-Colbrie, Phys. Rev. Lett. 60, 600 (1988).

    Article  Google Scholar 

  26. 26.

    A. Ourmazd, D. W. Taylor, J. A. Rentscheir, and J. Bevk, Phys. Rev. Lett 59, 743 (1987).

    Article  Google Scholar 

  27. 27.

    F. J. Himpsel, F. R. M. Feely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).

    CAS  Article  Google Scholar 

  28. 28.

    F. Rochet, S. Rigo, M. Froment, C. d’Anterroches, C. Maillot, H. Roulet, and G. Dufour, Adv. Phys. 35, 339 (1986).

    Article  Google Scholar 

  29. 29.

    J. A. Costello and R. E. Tressler, J. Electrochem. Soc. 131, 1944 (1984).

    CAS  Article  Google Scholar 

  30. 30.

    S. S. Cristy and J. B. Condon, J. Electrochem. Soc. 128, 2170 (1981).

    CAS  Article  Google Scholar 

  31. 31.

    F. Rochet, B. Agius, and S. Rigo, J. Electrochem. Soc. 131, 914 (1984).

    CAS  Article  Google Scholar 

  32. 32.

    E. Rosencher, A. Straboni, S. Rigo, and G. Amsel, Appl. Phys. Lett. 34, 254 (1979).

    CAS  Article  Google Scholar 

  33. 33.

    I. Trimaille and S. Rigo, Appl. Surf. Sci. 39, 65 (1989).

    CAS  Article  Google Scholar 

  34. 34.

    H. Niehus, W. Heiland, and E. Taglauer, Surf. Sci. Rept. 17, (1992).

Download references


The authors wish to acknowledge partial support of the NSF (DMR 89-075530) and the NAS CAST program.

Author information



Corresponding author

Correspondence to E. P. Gusev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gusev, E.P., Lu, H.C., Gustafsson, T. et al. On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation. MRS Online Proceedings Library 318, 69–74 (1993). https://doi.org/10.1557/PROC-318-69

Download citation