Electronic Structure of the ∑3[111] Grain Boundary and Doping Effect in Ni

Abstract

Based on the tight-binding bond recursion method, the energetics parameters of Σ3[111] grain boundary in nickel are investigated. The theoretical results indicate that the boron enhances interatomic energy between the host atoms, and between impurity and nickel atoms. Calculations of the energy of the grain boundary segregation show that boron, nitrogen, and phosphorus have the tendency to segregate onto the grain boundary and segregation property of boron is stronger than that of nitrogen and phosphorus.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. K. Vasudevan and J. D. Petrevic, Mat. Sci. Eng. A 155, 1(1992).

    Article  Google Scholar 

  2. [2]

    H. Gleiter, Prog. Mater. Sci. 33, 223(1989).

    CAS  Article  Google Scholar 

  3. [3]

    M. Paju and R. Moller, Scripta Metall. 18, 813(1984).

    CAS  Article  Google Scholar 

  4. [4]

    H. Erhart and H. J. Grabke, Scripta Metall. 15, 512(1981).

    Article  Google Scholar 

  5. [5]

    R. Maurer and H. Gleiter, Scripta Metall. 19, 1009(1985).

    CAS  Article  Google Scholar 

  6. [6]

    M. Aucouturier, Journal De Physique C6, 175(1982).

    Google Scholar 

  7. [7]

    L. Goodwin {etet al.}, Phys. Rev. Lett. 60, 2050(1988).

    CAS  Article  Google Scholar 

  8. [8]

    G. S. Painter and F. W. Averill, Phys. Rev. Lett. 58, 234(1987).

    CAS  Article  Google Scholar 

  9. [9]

    M. E. Eberhart, D. D. Vvedensky, Phys. Rev. Lett. 58, 61(1987).

    CAS  Article  Google Scholar 

  10. [10]

    M. E. Eberhart, D. D. Vvedensky, Materials Science Forum 46, 169(1989).

  11. [11]

    G. S. Painter, Phys. Rev. Lett. 70, 3959(1993).

    CAS  Article  Google Scholar 

  12. [12]

    V. Heine, Solid State Physics, 35, 1(1980).

    CAS  Article  Google Scholar 

  13. [13]

    C. M. M. M. Nex, J. Phys. A 11, 653(1978).

    Article  Google Scholar 

  14. [14]

    J. C. Slater and J. F. Koster, Phys. Rev. 94, 1498(1954).

  15. [15]

    W. A. Harrison, ElectronicStructureandthe Properties of Solid, (Freeman, San Francisco, 1980).

    Google Scholar 

  16. [16]

    R. L. Johannes, {etet al.}, Phys. Rev. Lett. 36, 372(1976).

    CAS  Article  Google Scholar 

  17. [17]

    Wang Chongyu {etet al.}, Proc, of International Workshop on Physics of Materials, B5-1 (1989).

  18. [18]

    R. Mauren, H. Gleiter, Scripta Metall. 18(1985).

  19. [19]

    H. Erhart and H. J. Grabke, Scripta Metall. 15, 531(1981).

    CAS  Article  Google Scholar 

  20. [20]

    M. Hashimoto {etet al.}, Scripta Metall. 16, 267(1982).

    CAS  Article  Google Scholar 

  21. [21]

    M. J. Kelly, Solid State Physics 35, 302(1980).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wang Chongyu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chongyu, W., Dongliang, Z. Electronic Structure of the ∑3[111] Grain Boundary and Doping Effect in Ni. MRS Online Proceedings Library 318, 571–576 (1993). https://doi.org/10.1557/PROC-318-571

Download citation