Sulfonated Metal-Oxide Surfaces: What Makes them So Acidic?


While some metal-oxide surfaces can be classified as acidic, after reacting with H2SO4 their acidity can be even higher than the parent sulfuric acid. In this paper, ab initio electronic structure calculations (3–21G+*//3–21G*) were performed on a series of model surfaces to examine these sulfonated species as strong, possibly even superacids. Our results indicate that the polarizing nature of the metal-oxide / sulfonate interaction stabilizes strong Bronsted and Lewis acid sites at the M-O surface and the sulfur center. Thermodynamic analysis has been performed to provide information for experimental verification.

This is a preview of subscription content, access via your institution.


  1. [1]

    K. Arata and M. Hino, Mat. Chem. Phys. 26, 213 (1990).

    CAS  Article  Google Scholar 

  2. [2]

    K. Tanabe, H. Hattori, and T. Yamaguchi, Crit. Rev. Surf. Chem. 1,1 (1990).

    CAS  Google Scholar 

  3. [3]

    Gaussian 90, Revision H, M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Deffees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1990.

  4. [4]

    M. Dupuis, D. Spangler, and J. J. Wendoloski, NRCC Software Catalog, 1980, 1, Program QG10; M. W. Schmidt, J. A. Boatz, K. K. Baldridge, S. Koseki, M. S. Gordon, S. T. Elbert, and B. Lam, QCPE Bull. 7, 115 (1987).

    Google Scholar 

  5. [5]

    W. J. Pietro, M. M. Francl, W. J. Hehre, D. J. DeFrees, J. A. Pople, and J. S. Binkley, J. Amer. Chem. Soc. 104, 5039 (1982).

    CAS  Article  Google Scholar 

  6. [6]

    T. Clark, J. Chandrasekhar, G. W. Spitznagel, and R. R. von Schleyer, J. Comp. Chem. 4, 294 (1983).

    CAS  Article  Google Scholar 

  7. [7]

    K. Kim and W. T. King, J. Chem. Phys. 80, 969 (1984); K. Kim and W. T. King, J. Chem. Phys. 80, 983 (1984); J. Cioslowski, J. Amer. Chem. Soc. 111, 8333 (1989); J. Cioslowski, T. Hamilton, G. Scuseria, B. A. Hess, J. Hu, L. J. Schaad, M. Dupuis, J. Amer. Chem. Soc. 112, 4183 (1990).

    CAS  Article  Google Scholar 

  8. [8]

    C. P. Sosa, J. Noga, and K. F. Ferris, J. Mol. Struct. 265, 163, (1992).

    CAS  Article  Google Scholar 

  9. [9]

    K. F. Ferris, Materials Letters 17, 146 (1993).

    CAS  Article  Google Scholar 

  10. [10]

    T. Jin, M. Machida, T. Yamaguchi, and K. Tanabe, Inorg. Chem. 23, 4396 (1984); T. Yamaguchi, T. Jin, and K. Tanabe, J. Phys. Chem. 90, 3148 (1986); and T. Jin, T. Yamaguchi, and K. Tanabe, J. Phys. Chem. 90,4794 (1986).

    CAS  Article  Google Scholar 

  11. [12]

    Yamaguchi, T., Applied Catalysis, 61, 1 (1990).

    CAS  Article  Google Scholar 

Download references


This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Material Science Division. The Pacific Northwest Laboratory is operated by Battelle Memorial Institute under contract DE-AC06-76RLO 1830.

Author information



Corresponding author

Correspondence to Kim F. Ferris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferris, K.F. Sulfonated Metal-Oxide Surfaces: What Makes them So Acidic?. MRS Online Proceedings Library 318, 539–544 (1993).

Download citation