Enhanced Ionic Conduction at the Film/Substrate Interface in LiI Thin Films Grown on Sapphire(0001)


The ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in-situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the LiI parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of ~5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction (σT) of ~0.47 ±.03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF2 films grown under similar conditions.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. J. Dudney, Ann. Rev. Mater. Sci.19, 103 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    C. C. Liang, J. Electrochem. Soc.120, 1289 (1973).

    CAS  Article  Google Scholar 

  3. 3.

    T. Jow and J. B. Wagner, Jr., J. Electrocem. Soc.126, 1963 (1979).

    CAS  Article  Google Scholar 

  4. 4.

    K. Shahi and J. B. Wagner, Jr., J. Electrochem. Soc.128, 6 (1981).

    CAS  Article  Google Scholar 

  5. 5.

    O. Nakamura and J. B. Goodenough, Sol. State Ionics7, 119 (1982).

    CAS  Article  Google Scholar 

  6. 6.

    F.W. Poulsen, N.H. Andersen, B. Kindl, and J. Schoonman, Sol. State Ionics9&10, 119 (1983).

    Article  Google Scholar 

  7. 7.

    M. R.-W. Chang, K. Shah, and J. B. Wagner, Jr., J. Electrochem. Soc.131, 1213 (1984).

    CAS  Article  Google Scholar 

  8. 8.

    S. Fujitsu, M. Miyayama, K. Koumoto, H. Yanagida, and T. Kanazawa, J.Mater. Sci.20, 2103 (1985).

    CAS  Article  Google Scholar 

  9. 9.

    N. J. Dudney, J. Am. Cer. Soc.70, 65 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    F. A. Modine and D. Lubben, J. Appl. Phys.74, 2658 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    K. L. Kliewer and J. S. Kohler, Phys. Rev.140, A1226 (1965).

    Article  Google Scholar 

  12. 12.

    J. Maier, Sol. State Ionics23, 59 (1987).

    CAS  Article  Google Scholar 

  13. 13.

    N. J. Dudney, J. Am. Cer. Soc.68, 65 (1985).

    Article  Google Scholar 

  14. 14.

    E. Schreck, K. Läuger, and K. Dransfield, Z. Phys.B62, 331 (1986).

    Article  Google Scholar 

  15. 15.

    J. R. Macdonald, in Impedance Spectroscopy, John Wiley and Sons, New York (1987).

    Google Scholar 

  16. 16.

    B. J. H. Jackson and D. A. Young, J. Phys. Chem. Solids30, 1973 (1969).

    CAS  Article  Google Scholar 

  17. 17.

    C. Schlaiker and C. C. Liang, J. Electrochem. Soc.118, 1447 (1971).

    Article  Google Scholar 

  18. 18.

    F. W. Poulsen, Sol. State Ionics2, 53 (1981).

    CAS  Article  Google Scholar 

  19. 19.

    J. Maier, Phys. Stat. Sol.A112, 115 (1989).

    Article  Google Scholar 

  20. 20.

    estimated value

  21. 21.

    W. G. Johnston, Phys. Rev.98, 1777 (1955).

    CAS  Article  Google Scholar 

  22. 22.

    B. Wassermann, T. P. Martin and J. Maier, Sol. State Ionics28–30, 1514 (1988).

    Article  Google Scholar 

  23. 23.

    B. Wassermann, W. Hönle, and T. P. Martin, Sol. State Comm.65, 561 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. Lubben.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lubben, D., Modine, F.A. Enhanced Ionic Conduction at the Film/Substrate Interface in LiI Thin Films Grown on Sapphire(0001). MRS Online Proceedings Library 318, 445–450 (1993). https://doi.org/10.1557/PROC-318-445

Download citation