Magnetic Properties of Epitaxial 6 ML fcc-Fe/Cu(100) Films

Abstract

A study has been made of the magnetic properties of epitaxial 6 monolayer (ML) fcc-Fe films on Cu(100) with various thicknesses of epitaxial Cu deposited on top of the Fe. It was found that the magnetic properties undergo striking changes as a function of the Cu thickness. The easy axis of magnetization goes from being in-plane for the bare Fe to perpendicular upon the deposition of 1 ML Cu. Concurrently there is a dramatic decrease in the Kerr signal intensity at saturation. Upon depositing a second ML of Cu the Kerr signal intensity more than doubles, and the easy axis remains perpendicular. For Cu overlayers of 3 ML to 10 ML the Kerr signal intensity at saturation gradually diminishes to below the level of detectability, as if the Fe were nonmagnetic. A superlattice consisting of 60 ML Cu/(6 ML 57Fe/10 ML Cu)x5/Cu(100) was fabricated and studied at room temperature by conversion electron Mossbauer spectroscopy. The results confirmed that the Fe is indeed nonmagnetic. The four inner Fe layers of the 6 ML film have the same isomer shift as bulk fcc-Fe in precipitates in Cu, and the two boundary Fe layers exhibit an asymmetric quadrupole doublet.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    Μ. F. Onellion, C. L. Fu, M. A. Thompson, J. L. Erskine, and A. J. Freeman, Phys. Rev. Β 33, 7322(1986).

    CAS  Article  Google Scholar 

  2. [2]

    A. Amiri Hezaveh, G. Jennings, D. Pescia, R. F. Willis, K. Prince, M. Surman, and A. M. Bradshaw, Solid State Comm. 57, 329 (1986).

    Article  Google Scholar 

  3. [3]

    P. A. Montano, et al. Phys. Rev. Lett. 59, 1041 (1987).

    CAS  Article  Google Scholar 

  4. [4]

    D. Pescia, M. Stampanoni, G. L. Bona, A. Vaterlaus, R. F. Willis, and F. Meier, Phys. Rev. Lett. 58, 2126 (1987).

    CAS  Article  Google Scholar 

  5. [5]

    W. A. A. Macedo and W. Keune, Phys. Rev. Lett. 61, 475 (1988).

    CAS  Article  Google Scholar 

  6. [6]

    C. Liu, E. R. Moog, and S. D. Bader, Phys. Rev. Lett. 60, 2422(1988).

    CAS  Article  Google Scholar 

  7. [7]

    D. P. Pappas, K.-P. Kamper, H. Hopster, Phys. Rev. Lett. 64, 3179 (1990).

    CAS  Article  Google Scholar 

  8. [8]

    W. A. A. Macedo, W. Keune, and E. D. Ellerbroch, J. Mag. Magn. Mat. 93, 552 (1991).

    CAS  Article  Google Scholar 

  9. [9]

    W. R. Bennett, W. Schwarzacher, and W. F. Egelhoff, Jr., Phys. Rev. Lett. 65, 3169 (1990).

    CAS  Article  Google Scholar 

  10. [10]

    J. Thomassen, F. May, B. Feldmann, M. Wuttig, and H. Ibach, Phys. Rev. Lett. 69, 3831 (1992).

    CAS  Article  Google Scholar 

  11. [11]

    D. H. Mosca, F. Petroff, A. Fert, P. A. Schroder, W. P. Pratt, Jr., and R. Laloee, J. Mag. Mag. Mat. 94, L1 (1991).

    CAS  Article  Google Scholar 

  12. [12]

    T. Katayama, Y. Suzuki, H. Awano, Y. Nishihara, and N. Koshizuka, Phys. Rev. Lett. 60, 1425 (1988).

    Article  Google Scholar 

  13. [13]

    D. A. Steigerwald, I. Jacob, and W. F. Egelhoff, Jr., Surface Sci. 202, 472 (1988).

    CAS  Article  Google Scholar 

  14. [14]

    W. F. Egelhoff, Jr. and D. A. Steigerwald, J. Vac. Sci. Technol. A 7, 2167 (1989).

    CAS  Article  Google Scholar 

  15. [15]

    W. F. Egelhoff, Jr., I. Jacob, J. M. Rudd, J. F. Cochran, and B. Heinrich, J. Vac. Technol. A 8, 1582 (1990).

    CAS  Article  Google Scholar 

  16. [15a]

    W. F. Egelhoff, Jr. and Μ. T. Kief, Phys. Rev. Β 45, 7795 (1992).

    CAS  Article  Google Scholar 

  17. [16]

    A. Brodde and H. Neddermeyer, to be published.

  18. [17]

    D. D. Chambliss, R. J. Wilson, and S. Chiang, J. Vac. Sci. Technol. A 10, 1992 (1992).

    Article  Google Scholar 

  19. [18]

    W. F. Egelhoff, Jr., J. Vac. Sci. Technol. A 7, 2060 (1989).

    CAS  Article  Google Scholar 

  20. [19]

    W. Schwarzacher, W. Allison, R. F. Willis, J. Penfold, R.C. Ward, I. Jacob, and W. F. Egelhoff, Jr., Solid State Comm. 71, 563 (1989); and unpublished results.

    CAS  Article  Google Scholar 

  21. [20]

    Β. N. Engel, Μ. H. Wiedmann, R. A. Van Leeuwen, and C. M. Falco, J. Appl. Phys., in press.

  22. [21]

    Μ. W. Wiedmann, Β. Ν. Engel, R. A. Van Leeuwen, and C. M. Falco, Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).

  23. [22]

    S. Ould-Mahfoud, R. Megy, N. Bardoux, B. Bartenlian, P. Beauvillain, C. Chappert, J. Corno, B. Lecuyer, G. Sczigel, P. Veillet, and D. Weller, Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).

  24. [23]

    A. Clarke, P. J. Rous, M. Arnott, G. Jennings, and R. F. Willis, Surface Sci. 192, L843 (1987).

    CAS  Article  Google Scholar 

  25. [24]

    M. Onellion, M. A. Thompson, J. L. Erskine, C. B. Duke, and A. Paton, Surface Sci. 179, 219 (1987).

    CAS  Article  Google Scholar 

  26. [25]

    S. A. Chambers, T. J. Wagener, and J. H. Weaver, Phys. Rev. Β 36, 8992 (1987).

    CAS  Article  Google Scholar 

  27. [26]

    Y. Darici, J. Marcan, H. Min, and P. A. Montano, Surface Sci. 182, 477 (1987).

    CAS  Article  Google Scholar 

  28. [27a]

    W. Daum, C. Stuhlmann, and H. Ibach, Phys. Rev. Lett. 60, 2741 (1988).

    CAS  Article  Google Scholar 

  29. [27b]

    S. H. Liu, J. Quinn, D. Tian, F. Jona, and P. M. Marcus, Surface Sci. 209, 364 (1989).

    Article  Google Scholar 

  30. [27ba]

    F. Jona and P. M. Marcus, Surface Sci. 223, L8978 (1989).

    Article  Google Scholar 

  31. [28]

    P. Xhonneux and E. Courtens, Phys. Rev. Β 46, 556 (1992).

    CAS  Article  Google Scholar 

  32. [29]

    C. Stuhlmann, U. Beckers, J. H. Thomassen, M. Wuttig, H. Ibach, and G. Schmidt, in The Structure of Surfaces III, S. Y. Tong, M. A. Van Hove, K. Takayanagi, and X. D. Xie, Eds., Springer-Velag, Berlin, 1993.

  33. [30]

    H. Magnan, D. Chanderis, B. Villette, O. Heckmann, and J. Lecante, Phys. Rev. Lett. 67, 859 (1991); and W. Schwarzacher, to be published.

    CAS  Article  Google Scholar 

  34. [31]

    Μ. T. Kief and W. F. Egelhoff, Jr., Phys. Rev. Β 47, 10785 (1993).

    CAS  Article  Google Scholar 

  35. [32]

    V. L. Moruzzi, Phys. Rev. Lett. 57, 2211 (1986).

    CAS  Article  Google Scholar 

  36. [33]

    V. L Moruzzi, P. M. Marcus, and J. Kubler, Phys. Rev. Β 39, 6957 (1989).

    CAS  Article  Google Scholar 

  37. [34]

    J. E. Ortega, F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992).

    CAS  Article  Google Scholar 

  38. [35]

    J. E. Ortega, F. J. Himpsel, G. J. Mankey, and R. F. Willis, Phys. Rev. B, in press (see curve 2 in Fig. 3b).

  39. [36]

    J. E. Ortega, F. J. Himpsel, G. J. Mankey, and R. F. Willis, Mater. Res. Soc. Symp. Proc. 313 (in press, 1993).

    Google Scholar 

  40. [37]

    P. D. Johnson, Mat. Res. Soc. Symp Proc. 313 (in press, 1993).

    Google Scholar 

  41. [38]

    L. H. Bennett and L. J. Swartzendruber, Acta Metall. 18, 485 (1970).

    CAS  Article  Google Scholar 

  42. [39]

    S. C. Abrahams, L Guttman.and I. S. Kasper, Phys. Rev. 127, 2052 (1962).

    CAS  Article  Google Scholar 

  43. [39a]

    R. J. Weiss, Phil. Mag. 9, 361 (1964) and Proc. Phys. Soc. 82, 281 (1963).

    CAS  Article  Google Scholar 

  44. [40]

    W. Keune, R. Halbauer, U. Gonser, J. Lauer, and D. L. Williamson, J. Appl. Phys. 48, 2976 (1977).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. J. Swartzendruber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Swartzendruber, L.J., Bennett, L.H., Kief, Μ.T. et al. Magnetic Properties of Epitaxial 6 ML fcc-Fe/Cu(100) Films. MRS Online Proceedings Library 313, 237–243 (1993). https://doi.org/10.1557/PROC-313-237

Download citation