Quantum-Well Contributions to the RKKY Coupling in Magnetic Multilayers


We study the effects of quantum-well states on the calculated RKKY coupling. We find that the bound states of a finite-size potential well of depth V give an added oscillation period of size \(\pi \hbar /\sqrt {2mV} \). For the simplest case of a spherical free-electron Fermi surface, thus two periods appear: the original, “fast,” π/kF oscillation, and the quantum-well one \(\pi \hbar /\sqrt {2mV} \). The quantum-well contributions have larger amplitude, and are in fact the predominant oscillation. For physically reasonable V (tenths of an eV) this period is around 8–10Å. We discuss evidence for these effects in experimental systems.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    The following work covers study of several spacer materials. S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).

    CAS  Article  Google Scholar 

  3. 2a.

    S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).

    CAS  Article  Google Scholar 

  4. 2b.

    S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).

    CAS  Article  Google Scholar 

  5. 3.

    P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).

    CAS  Article  Google Scholar 

  6. 3a.

    C. Chappert and J. P. Renard, Europhys. Lett. 15, 553 (1991).

    CAS  Article  Google Scholar 

  7. 4.

    Y. Wang, P. M. Levy, and J. L. Fry, Phys. Rev. Lett. 65, 2732 (1990).

    CAS  Article  Google Scholar 

  8. 4a.

    J. L. Fry, E. C. Ethridge, P. M. Levy, and Y. Wang, J. Appl. Phys. 69, 4780 (1991).

    CAS  Article  Google Scholar 

  9. 5.

    F. Herman, J. Sticht, and M. Van Schilfgaarde, J. Appl. Phys. 69, 4783 (1991).

    CAS  Article  Google Scholar 

  10. 5a.

    F. Herman and R. Schrieffer, Phys. Rev. B, to be published.

  11. 6.

    D. M. Deaven, D. Rokhsar, and M. Johnson, Phys. Rev. Β 44, 5977 (1991).

    Article  Google Scholar 

  12. 7.

    R. Coehoorn, Phys. Rev. Β 44, 9331 (1991).

    Article  Google Scholar 

  13. 8.

    J. E. Ortega and F. J. Himpsel, Phys. Rev. Lett. 69, 844 (1992). See also contributions in these proceedings.

    CAS  Article  Google Scholar 

  14. 9.

    Details of the calculations appear in B. A. Jones and C. B. Hanna, preprint.

  15. 10.

    See Ref. 9. Delta functions or finite-width barriers for the interfaces give a phase slip; that is, the whole RKKY curve is shifted to the left or to the right. However, no new oscillation periods appear (because the number of bound states, if present, does not vary with the width of the spacer layer). A “negative well” shows similar phase slip effects.

Download references


We acknowledge helpful discussions with S. Parkin, F. Herman, J. R. Schrieffer, J. Slonczewski, M. Stiles, and V. Kalmeyer. This research was supported in part by the Aspen Center for Physics, and by the National Science Foundation under Grant No. PHY89-04035.

Author information



Corresponding author

Correspondence to B. A. Jones.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, B.A., Hanna, C.Β. Quantum-Well Contributions to the RKKY Coupling in Magnetic Multilayers. MRS Online Proceedings Library 313, 165–169 (1993). https://doi.org/10.1557/PROC-313-165

Download citation