NMR Techniques for Studying Ionic Diffusion in Solids

Abstract

A survey of NMR relaxation time techniques for studying ionic diffusion in solids is presented. Particular emphasis is placed on discussing the kinds of information obtainable from T1, T, T1D, and T1D′ measurements. Applications to the study of local and nonlocal diffusion, diffusion in weakly magnetic systems, and motions between unequal potential wells are described. Relaxation due to fluctuating dipolar, quadrupolar, and chemical shift anisotropy interactions is discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. Reif, Phys. Rev. 100, 1597 (1955).

    CAS  Article  Google Scholar 

  2. 2.

    D.F. Holcomb and R.E. Norberg, Phys. Rev. 98, 1074 (1955).

    CAS  Article  Google Scholar 

  3. 3.

    I. Chung, H.S. Story, and W.L. Roth, J. Chem. Phys. 63, 4903 (1975).

    CAS  Article  Google Scholar 

  4. 4.

    G.E. Jellison, Jr., Solid State Commun. 30, 481 (1979).

    CAS  Article  Google Scholar 

  5. 5.

    R. Bersohn and H.S. Gutowsky, J. Chem. Phys. 22, 651 (1954).

    CAS  Article  Google Scholar 

  6. 6.

    S.H.N. Wei and D.C. Ailion, Phys. Rev. B19, 4470 (1979).

    Article  Google Scholar 

  7. 7.

    An excellent introductory text is Principles of Magnetic Resonance, 2nd ed. (Springer-Verlag, Berlin 1978) by C.P. Slichter.

    Google Scholar 

  8. 8.

    Convenient charts which show basic NMR features for each nucleus (e.g., gyromagnetic ratio, quadrupole moment, and NMR sensitivity) are readily available from instrument companies like Van an Associates and Brucker Magnetics Inc.

  9. 9.

    S.R. Hartmann and E. L. Hahn, Phys. Rev. 128, 2042 (1962).

    CAS  Article  Google Scholar 

  10. 10.

    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford 1961) p. 33.

    Google Scholar 

  11. 11.

    See pp. 180–181 of Ref. [7].

    Google Scholar 

  12. 12.

    E.R. Andrew and R.G. Eades, Proc. Roy. Soc. A218, 537 (1953).

    Google Scholar 

  13. 13.

    H.T. Stokes, T.A. Case, D.C. Ailion, and C.H. Wang, J. Chem. Phys. 70 3572 (1979).

    CAS  Article  Google Scholar 

  14. 14.

    A. Messiah, Quantum Mechanics, Vol. II (Wiley, New York 1966), Chs. XVI and XVII.

    Google Scholar 

  15. 15.

    N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73, 679 (1948).

    CAS  Article  Google Scholar 

  16. 16.

    D.C. Ailion in Advances in Magnetic Resonance, Vol. 5, J.S. Waugh ed. (Academic Press, New York 1971) pp. 177–227.

    Google Scholar 

  17. 17.

    A.G. Redfield, Phys. Rev. 98, 1787 (1955).

    CAS  Article  Google Scholar 

  18. 18.

    D.C. Look and I.J. Lowe, J. Chem. Phys. 44, 2995 (1966).

    CAS  Article  Google Scholar 

  19. 19.

    C.P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

    Article  Google Scholar 

  20. 20.

    C.P. Slichter and D.C. Ailion, Phys. Rev. 135, A1099 (1964).

    Article  Google Scholar 

  21. 21.

    D.C. Ailion and C.P. Slichter, Phys. Rev. 137, A235 (1965).

    Article  Google Scholar 

  22. 22.

    D.C. Ailion and P. Ho, Phys. Rev. 168, 662 (1968).

    CAS  Article  Google Scholar 

  23. 23.

    J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

    CAS  Article  Google Scholar 

  24. 24.

    H.T. Stokes and D. C. Ailion, Phys. Rev. B16, 4746 (1977).

    Article  Google Scholar 

  25. 25.

    M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford 1970), p. 37.

    Google Scholar 

  26. 26.

    H.T. Stokes and D.C. Ailion, Phys. Rev. B18, 141 (1978).

    Article  Google Scholar 

  27. 27.

    J.R. Beckett, J. Pourquié and D.C. Ailion, in Proc. of MRS Symposium on Nuclear and Electron Resonance Spectroscopies Applied to Materials science (North-Holland, Boston 1980).

    Google Scholar 

  28. 28.

    M. Polak and D.C. Ailion, J. Chem Phys. 67, 3029 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    E.L. Kitts, Jr., M. Ikeya, and J.H. Crawford, Jr., Phys. Rev. B 8, 5840 (1973).

    CAS  Article  Google Scholar 

  30. 30.

    N. Peterson, in Diffusion in Solids: Recent Developments, A.S. Nowick, J.J. Burton eds. (Academic Press, New York 1975), pp. 115–170.

    Google Scholar 

  31. 31.

    D. Wolf, Spin Temperature and Nuclear Spin Relaxation in Matter (Clarendon Press, Oxford 1979).

    Google Scholar 

  32. 32.

    H.Y. Carr and E.M. Purcell, Phys. Rev. 94, 630 (1954).

    CAS  Article  Google Scholar 

  33. 33.

    E.O. Stejskal and J.E. Tanner, J. Chem. Phys. 42, 288 (1965).

    CAS  Article  Google Scholar 

  34. 34.

    R.E. Gordon and J.H. Strange, J. Phys. C: Solid St. Phys. 11, 3213 (1978).

    CAS  Article  Google Scholar 

  35. 35.

    G. Brünger, O. Kanert, and D. Wolf, Solid State Commun. 33, 569 (1980).

    Article  Google Scholar 

  36. 36.

    T.P. Das and E.L. Hahn, in Solids State Physics: Supplement 1, F. Seitz, D. Turnbull eds. (Academic Press, New York 1958).

    Google Scholar 

  37. 37.

    A. Tzalmona and D.C. Ailion, Phys. Rev. Lett. 44, 460 (1980).

    CAS  Article  Google Scholar 

  38. 38.

    H.T. Stokes, T.A. Case, and D.C. Ailion, to be published.

  39. 39.

    O. Kanert, R. Küchler, and M. Mali, J. Phys. (Paris) 41, C6–404 (1980).

    Article  Google Scholar 

  40. 40.

    J.S. Waugh, L.M. Huber, and U. Haeberlen, Phys. Rev. 20, 180 (1968).

    CAS  Google Scholar 

  41. 41.

    See p. 316 of Ref. 10.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David C. Ailion.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ailion, D.C. NMR Techniques for Studying Ionic Diffusion in Solids. MRS Online Proceedings Library 3, 55 (1980). https://doi.org/10.1557/PROC-3-55

Download citation