The Mössbauer Effect and Some Applications in Materials Research

Abstract

A brief introduction to the Mössbauer effect is presented. The hyperfine interactions associated with the electric monopole, magnetic dipole and electric quadrupole moments of the nuclear states involved in the Mössbauer transition are described. Their use in materials research is illustrated through examples dealing with phase analysis, binary solubility, defect interaction and surface properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    For example, G. K. Wertheim, Mössbauer Effect: Principles and Applications (Academic Press, New York, 1964).

    Google Scholar 

  2. 2.

    U. Gonser, Mössbauer Spectroscopy (Springer-Verlag, Berlin and New York, 1976).

    Google Scholar 

  3. 3.

    R. L. Cohen, Applications of Mössbauer Spectroscopy, Vol. 1 and 2, (Academic Press, New York, 1976 and 1981).

    Google Scholar 

  4. 4.

    J. G. Stevens and G. K. Shenoy, Chemical Applications of Mössbauer Spectroscopy, Advances in Chemistry Series (American Chemical Society, Washington, D.C., 1981).

    Google Scholar 

  5. 5.

    See for example, G. K. Shenoy and F. E. Wagner, Mössbauer Isomer Shifts (North-Holland Publ., Amsterdam, 1978).

    Google Scholar 

  6. 6.

    A. J. Freeman and R. B. Frankel, Hyperfine Interactions (Academic Press, New York, 1967).

    Google Scholar 

  7. 7.

    H. H. Wickman in: Mössbauer Effect Methodology, Vol. 2, I. J. Gruverman ed. (Plenum Press, New York, 1966), p. 39.

    Google Scholar 

  8. 8.

    M. H. Cohen and F. Reif, Solid State Phys. 5, 321 (1957).

    CAS  Article  Google Scholar 

  9. 9.

    G. D. Sandrock (private communication, 1978).

  10. 10.

    W. Shäfer, E. Lebsanft and A. Blasius, Z. Phys. Chem. N.F. 115, 201 (1979).

    Article  Google Scholar 

  11. 11.

    L. J. Swartzendrauber, L. H. Bennett and R. E. Watson, J. Phys. F. Metal Physics 6, L331 (1976).

    Article  Google Scholar 

  12. 12.

    S. Nasu, V. Gonser, and Ft. S. Preston, J. Physique 41, C1–385 (1980).

    Article  Google Scholar 

  13. 13.

    B. D. Sawicka, J. Physique 41, C1–429 (1980).

    Article  Google Scholar 

  14. 14.

    L. S. Darken and R. W. Gurry, Physical Chemistry of Metals (McGraw-Hill, New York, 1973), p. 87.

    Google Scholar 

  15. 15.

    A. R. Miedema, J. Less-Common Met. 32, 117 (1973). A. R. Miedema, R. Boom and R. R. de Baer, J. Less-Common Met. 41, 283, (1975), and 46, 67 (1976).

    CAS  Article  Google Scholar 

  16. 16.

    G. Vogl, Hyperfine Int. 2, 151 (1976), and references cited therein.

    CAS  Article  Google Scholar 

  17. 17.

    Ron G. Pirich, G. R. Burr, G. K. Shenoy, B. D. Dunlap, B. Suits, and J. D. Phillips, Phys. Rev. Letters 38, 1142 (1977).

    CAS  Article  Google Scholar 

  18. 18.

    P. A. Flinn and T. O’Connell, U.S. Atomic Energy Commission Rept. WASH-1220 (1973).

  19. 19.

    M. J. Tricker, in Ref. 4, and G. Longworth in this volume.

    Google Scholar 

  20. 20.

    G. K. Shenoy, D. Niarchos, P. J. Viccaro, B. D. Dunlap, A. T. Aldred and G. D. Sandrock, J. Less-Common Metals 73, 171 (1980); A. Blässius and U. Gonser, Appl. Phys. 22, 331 (1980).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. K. Shenoy.

Additional information

Work supported by the U. S. Department of Energy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shenoy, G.K. The Mössbauer Effect and Some Applications in Materials Research. MRS Online Proceedings Library 3, 133 (1980). https://doi.org/10.1557/PROC-3-133

Download citation