First-Principles Theory of Polarization in Ferroelectrics


We outline a modern theory of the spontaneous polarization P in pyroelectric and ferroelectric materials. Although P itself is not an observable, the difference ΔP between two crystal states can indeed be measured and calculated. We define P as the difference between the polar structure and a suitably chosen nonpolar prototype structure. We previously proposed and implemented a supercell scheme in order to evaluate P in pyroelectric BeO; here we adopt an approach recently developed by King-Smith and Vanderbilt, where ΔP is obtained from the computation of Berry's phases, with no use of supercells. We apply this novel approach, which is numerically very convenient, in order to revisit our previous work on BeO. We then perform a first-principles investigation of the spontaneous polarization P of KNbO3 in its tetragonal phase, which is a well studied perovskite ferroelectric. Our calculated P value confirms the most recent experimental data. The polarization is linear in the ferroelectric distortion; the Born effective charges show strong variations from nominal ionic values, and a large inequivalence of the O ions. Only the highest nine valence-band states (O 2p) contribute to P, while all the other states behave as rigid core states.

This is a preview of subscription content, access via your institution.


  1. 1.

    M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  2. 2.

    M. Posternak, A. Baldereschi, A. Catellani and R. Resta, Phys. Rev. Lett. 64, 1777 (1990); A. Baldereschi, M. Posternak, and R. Resta, Phys. Rev. Lett. 69, 390 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    R. Resta, M. Posternak, A. Baldereschi, and A. Catellani, Ferroelectrics 111, 15 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    J. Jerphagnon and H.W. Newkirk, Appl. Phys. Letters 18, 245 (1971).

    CAS  Article  Google Scholar 

  5. 5.

    S. Lundqvist and N.H. March (editors), Theory of the Inhomogeneous Electron Gas (Plenum, New York, 1983).

    Google Scholar 

  6. 6.

    R. Resta, Ferroelectrics, 136, 51 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B, 15 Jan. 1993.

  8. 8.

    J. Zak, Phys. Rev. Lett. 62, 2747 (1989); see also L. Michel and J. Zak, Europhys. Lett. 18, 239 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    H. J. F. Jansen and A. J. Freeman, Phys. Rev. B. 30, 561 (1984).

    CAS  Article  Google Scholar 

  10. 10.

    S. Triebwasser, Phys. Rev. 101, 993 (1956).

    CAS  Article  Google Scholar 

  11. 11.

    W. Kleemann, F. J. Schüfer, and M. D. Fontana, Phys. Rev. B 30, 1148 (1984), and references therein.

    CAS  Article  Google Scholar 

  12. 12.

    M. D. Fontana, G. Mütrat, J. L. Servoin, and F. Gervais, J. Phys.C 17, 483 (1984).

    CAS  Article  Google Scholar 

  13. 13.

    A. W. Hewat, J. Phys. C 6, 1074 (1973).

    CAS  Article  Google Scholar 

  14. 14.

    In this work the K 3p states are treated as valence states, while the Nb 4p's are calculated with the semi-core approximation following the method of D. D. Koelling, Solid State Commun. 53, 1019 (1985).

    CAS  Article  Google Scholar 

  15. 15.

    M. Born, Rev. Mod. Phys. 17, 245 (1945).

    Article  Google Scholar 

  16. 16.

    R. Resta, M. Posternak, and A. Baldereschi (to be published).

Download references

Author information



Corresponding author

Correspondence to R. Resta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Resta, R., Posternak, M. & Balderescrt, A. First-Principles Theory of Polarization in Ferroelectrics. MRS Online Proceedings Library 291, 647–652 (1992).

Download citation