Elastic Instabilities and Amorphization of Crystalline Silica Under Pressure


Solid state amorphization can occur when a crystalline phase is compressed at a sufficiently low temperature to inhibit kinetically the transformation to a stable high pressure crystalline phase. An example of such a vitrification transformation occurs in α-quartz, the most stable phase of SiO2 at standard temperature and pressure conditions. Under pressure at room temperature α-quartz gradually transforms to an amorphous form in the range of 25–30 GPa. The driving force for this amorphization is not clear, and speculation has centered on mechanical instabilities of the quartz crystal under pressure. The elastic properties of α-quartz are studied as a function of pressure using both classical interatomic potentials, and ab initio pseudopotentials. In both cases, we find that the α-quartz structure becomes mechanically unstable at about 30GPa. This finding supports a picture in which the amorphization of quartz is triggered by the onset of a lattice shear-instability. The microscopic origin of this elastic softening is intimately related to the presence of an oxygen close-packed cubic arrangement in the quartz high pressure structure.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    R.J. Hemley, A.P. Jepcoat, H.K. Mao, L.C Ming, and M.H. Manghnani, Nature 334, 32 (1988).

    Article  Google Scholar 

  2. 2.

    K. Kingman, C. Meade, R.J. Hemley, H.K. Mao and D.R. Veblen, to be published.

  3. 3.

    L.E. McNeil and M. Grimsditch, Phys. Rev. Lett. 68, 83 (1992).

    Google Scholar 

  4. 4.

    M.L. Cohen in Electronic Materials: A New Era in Materials Science, J.R. Chelikowsky and A. Franciosi, editors, Springer-Verlag, Solid State Science Series, Vol. 95.

  5. 5.

    J.R. Chelikowsky and M.L. Cohen, “Ab initio Pseudopotentials for Semiconductors,” Handbook on Semiconductors, P. Landsberg, editor, 2nd Edition, Elsevier, 1993 (in press).

    Google Scholar 

  6. 6.

    M.B. Kruger and R. Jeanloz, Science 249, 647 (1990) and references therein.

    CAS  Article  Google Scholar 

  7. 7.

    G.H. Wolf, S. Wang, C.A. Herbst, D.J. Durben, W.F. Oliver, and K. Halvorson, to be published.

  8. 8.

    J.S. Tse and D.D. Klug, Phys. Rev. Lett. 67, 3559 (1991) and references therein.

    CAS  Article  Google Scholar 

  9. 9.

    O. Mishima, L.D. Calvert, and E. Whalley, Nature 310, 393 (1984).

    CAS  Article  Google Scholar 

  10. 10.

    J. Ihm, A. Zunger, and M.L. Cohen, J. Phys. C 12, 4409 (1979); ibid 13, 3095 (1980).

    CAS  Article  Google Scholar 

  11. 11.

    J.R. Chelikowsky, N. Troullier, J.L. Martins, and H.E. King, Jr., Phys. Rev. B 44, 489 (1991); N. Binggeli, N. Troullier, J.L. Martins, and J.R. Chelikowsky, Phys. Rev. B 44, 4771 (1991) and N. Binggeli and J.R. Chelikowsky, Phys. Rev. Lett. 69, 2220 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    D.M. Ceperly and B.J. Adler, Phys. Rev. Lett. 45, 566 (1980)

    Article  Google Scholar 

  13. 13.

    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    CAS  Article  Google Scholar 

  14. 14.

    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    S. Tsuneyuki, Y. Matsui, H. Aoki and M. Tsukada, Nature 339, 209 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    B.W.H. van Beest, G.J. Kramer and R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).

    Article  Google Scholar 

  17. 17.

    F. Birch, J. Geophys. Res. 57, 227 (1952).

    CAS  Article  Google Scholar 

  18. 18.

    N. Keskar and J.R. Chelikowsky, Phys. Rev. B 46, 1 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    R.E. Cohen, Am. Mineral. 76, 733 (1991).

    CAS  Google Scholar 

  20. 20.

    L. Levien, C.T. Prewitt, and D.J. Weidner, Am. Mineral. 65, 920 (1980).

    CAS  Google Scholar 

  21. 21.

    J.D. Bass, R.C. Liebermann, D.J. Weidner, and S.J. Finch, Phys. Earth Planet Interiors, 25, 140 (1981).

    Article  Google Scholar 

  22. 22.

    R.W.G. Wyckoff, Crystal Structures, Interscience, New York, 1974, 4th edition.

    Google Scholar 

  23. 23.

    V.G. Zubov and M.M. Firsova, Kristallographia 1, 546 (1956).

    CAS  Google Scholar 

  24. 24.

    N.L. Ross, J. Shu, R.M. Hazen, and T. Gasparik, Amer. Mineral. 75, 739 (1990).

    CAS  Google Scholar 

  25. 25.

    M. Sugiyama, S. Endo and K. Koto, Mineral. J. 13, 455 (1987).

    CAS  Article  Google Scholar 

  26. 26.

    H. Sowa, Z. für Kristallogr. 184, 257 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    J. Glinnemann, H.E. King, Jr., H. Schulz, Th. Hahn, S.J. LaPlaca, and F. Dacol, Z. für Kristallogr. 198, 177 (1992).

    CAS  Article  Google Scholar 

  28. 28.

    K.L. Geisinger, G.V. Gibbs, and A. Navrotsky, Phys. Chem. Minerals 11, 266 (1985).

    CAS  Article  Google Scholar 

  29. 29.

    J. Zemann, Z. für Kristallogr. 175, 299 (1986).

    CAS  Google Scholar 

  30. 30.

    T.H.K Barron and M.L. Klein, Proc. Roy. Soc. 85, 523 (1965).

    Article  Google Scholar 

  31. 32.

    A.G. Smagin and B.G. MiPshtein, Soviet Physics Crystallogr. 19, 514 (1975).

    Google Scholar 

  32. 33.

    N. Binggeli and J.R. Chelikowsky, Nature 353, 344 (1991).

    CAS  Article  Google Scholar 

  33. 34.

    J.P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, and H. Tolentino, Phys. Rev. Lett. 63, 398 (1989); Y. Tsuchida and T. Yagi, Nature 347, 267 (1990).

    CAS  Article  Google Scholar 

  34. 35.

    N. Binggeli, R. Wentzcovitch, and J.R. Chelikowsky, to be published.

Download references


We would like to acknowledge support for this work by the U.S. Department of Energy of the Office of Basic Energy Sciences (Division of Materials Research) under Grant No. DE-FG02-89ER45391. We would also like to acknowledge computational support from the Minnesota Supercomputer Institute.

Author information



Corresponding author

Correspondence to James R. Chelikowsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chelikowsky, J.R., Binggeli, N. Elastic Instabilities and Amorphization of Crystalline Silica Under Pressure. MRS Online Proceedings Library 291, 629–639 (1992). https://doi.org/10.1557/PROC-291-629

Download citation