Nonlinear Molecular Dynamics and Monte Carlo Simulations Of Crystals at Constant Temperature and Tensorial Pressure

Abstract

Complimentary molecular dynamics and Metropolis Monte Carlo algorithms for the atomistic simulation of crystals at constant temperature and homogeneous tensorial pressure are summarized. The novel aspect of computational physics which unites these methods is the extension of the virial theorem to nonlinear elastic media. This guarantees the dynamical balance between the internal pressure, as determined by the interatomic potential, and effective external pressure, as determined by the applied laboratory pressure, and includes the elastic response of the material. Numerical examples are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. V. Lill and Jeremy Q. Broughton, Phys. Rev. B. 46, 12068 (1992).

    CAS  Article  Google Scholar 

  2. 2

    J. V. Lill and Jeremy Q. Broughton (manuscript in preparation).

  3. 3

    Francis D. Murnaghan, Finite Deformations of an Elastic Solid (John Wiley & Sons, Inc., New York 1951).

    Google Scholar 

  4. 4

    R. N. Thurston, “Wave Propagation in Fluids and Normal Solids”; pages 1–110 in Physical Acoustics: Principles and Methods, edited by Warren P. Mason (Academic Press, New York 1964).

    Google Scholar 

  5. 5

    Hans C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    CAS  Article  Google Scholar 

  6. 6

    M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

    CAS  Article  Google Scholar 

  7. 7

    M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    CAS  Article  Google Scholar 

  8. 8

    Shuichi Nosé, Mol. Phys. 52, 255 (1984).

    Article  Google Scholar 

  9. 9

    Shuichi Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  10. 10

    William G. Hoover, Phys. Rev. A 31, 1695 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Farid F. Abraham, Adv. in Phys. 35, 1 (1986).

    CAS  Article  Google Scholar 

  12. 12

    John R. Ray and Aneesur Rahman, J. Chem. Phys. 80, 4423 (1984).

    CAS  Article  Google Scholar 

  13. 13

    John R. Ray and Aneesur Rahman, J. Chem. Phys. 82, 4243 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Renata M. Wentzcovitch, Phys. Rev. B 44, 2358 (1991).

    CAS  Article  Google Scholar 

  15. 15

    J. F. Nye, Physical Properties of Crystals, chapter V (Oxford University Press, London 1957).

    Google Scholar 

  16. 16

    Shuichi Nos and M. L. Klein, Mol. Phys. Rev. 50, 1055 (1983).

    Article  Google Scholar 

  17. 17

    M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford 1987).

    Google Scholar 

  18. 18

    Steven E. Koonin, Computational Physics (Benjamin/Cummings, Menlo Park 1983).

    Google Scholar 

  19. 19

    Kar Yue Lee and John R. Ray, Phys Rev. B 39, 565 (1989).

    Article  Google Scholar 

  20. 20

    A. G. Khachaturyan, Theory of Structural Transformations in Solids, chapter 7 (John Wiley & Sons, New York 1983).

    Google Scholar 

  21. 21

    Mo Li and William L. Johnson, Phys. Rev. B. 46, 5327 (1992).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. V. Lill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lill, J.V. Nonlinear Molecular Dynamics and Monte Carlo Simulations Of Crystals at Constant Temperature and Tensorial Pressure. MRS Online Proceedings Library 291, 597–612 (1992). https://doi.org/10.1557/PROC-291-597

Download citation