Monte Carlo and Molecular Dynamics Validation of an N-Body Potential for Cu3Au

Abstract

We present the results of Monte Carlo and Molecular Dynamics simulations of some thermodynamical properties of Cu3Au. The calculations rely on an empirical n-body potential that reproduces satisfactorily the critical temperature, Tc, the temperature dependence of the lattice constant and atomic vibrational amplitudes as well as Cowley’s short-range order parameters above Tc. Our results show that relaxation effects decrease considerably the formation energy of antisite defects and therefore should explicitly be considered for a realistic description of the transition.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    V. Vitek and D. J. Srolovitz, Eds., Atomistic simulation of materials: beyond pair-potentials, (Plenum, New York, 1989), p. 193.

    Google Scholar 

  2. 2.

    K. Maeda, V. Vitek and A. P. Sutton, Acta Met. 30, 2001 (1982).

    CAS  Article  Google Scholar 

  3. 3.

    S. M. Foiles, M. I. Baskes and M. S. Daw, Phys. Rev. B33, 7983 (1982).

    Google Scholar 

  4. 4.

    G. J. Ackland and V. Vitek, in Atomistic simulation of materials: beyond pair-potentials, edited by V. Vitek and D. J. Srolovitz (Plenum, New York, 1989), p. 193.

  5. 5.

    P. Bardhan and J. B. Cohen, Acta Cryst. A32, 597 (1976).

    CAS  Article  Google Scholar 

  6. 6.

    M. Bessire, Doctorat d’Etat, Univ. Pierre & Marie Curie / Paris VI, 1984.

  7. 7.

    B. Loisel, D. Gorse, V. Pontikis and J. Lapujoulade, Surface Sci. 221, 365 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    V. Rosato, M. Guillop and B. Legrand, Phil. Mag. A59, 321 (1989).

    Article  Google Scholar 

  9. 9.

    C. Massobrio and V. Pontikis, Phys. Rev. Lett. 62, 1142 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    G. A. Evangelakis, J. P. Rizos, I. E. Lagaris and I. N. Demetropoulos, Comp. Phys. Comm., 46, 401 (1987).

    Article  Google Scholar 

  11. 11.

    R. O. Simmons and H. Wang, Single crystal elastic constants and calculated aggregate properties: a handbook, (MIT press, Cambridge MA, 1971).

    Google Scholar 

  12. 12.

    P. A. Flinn, G. M. McManus and J. A. Rayne, J. Phys. Chem. Solids 15, 189 (1960).

    CAS  Article  Google Scholar 

  13. 13.

    C. Kittel, in Introduction ta physique de l’tat solide, (Dunod, Paris, 1975).

    Google Scholar 

  14. 14.

    S. H. Wei, A.A. Mbaye, L. G. Ferreira, A. Zunger, Phys. Rev. B36, 4163 (1987).

    Article  Google Scholar 

  15. 15.

    H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    CAS  Article  Google Scholar 

  16. 16.

    S. Nos, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  17. 17.

    C. H. Bennett, in Diffusion in Solids, Recent Developments, edited by A. S. Nowick and J. J. Burton (Academic Press, New York, 1975) p. 73.

  18. 18.

    V. Pontikis, Ann. Chim. Fr., 11, 29 (1986).

    CAS  Google Scholar 

  19. 19.

    S. C. Moss, J. Appl. Phys. 35, 3547 (1964).

    CAS  Article  Google Scholar 

  20. 20.

    W. B. Pearson, A handbook of lattice spacings and structures of metals and alloys, (Pergamon, Oxford, 1967).

    Google Scholar 

  21. 21.

    L. H. Schwartz and J. B. Cohen, J. App. Phys. 36, 598 (1965).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Rey-Losada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rey-Losada, C., Hayoun, M. & Pontikis, V. Monte Carlo and Molecular Dynamics Validation of an N-Body Potential for Cu3Au. MRS Online Proceedings Library 291, 549–553 (1992). https://doi.org/10.1557/PROC-291-549

Download citation