Methods for Determining Vacancy Formation Thermodynamic

Abstract

The vacancy formation thermodynamics in six fcc metals Ag, Au, Cu, Ni, Pd and Pt are determined from atomistic simulations as a function of temperature. This investigation is performed using the Embedded Atom Method interatomic potentials and the finite temperature properties are determined within the local harmonic and the quasiharmonic frameworks. We find that the temperature dependence of the vacancy formation energy can make a significant contribution to the vacancy concentration at high temperatures. An additional goal of the present study is to evaluate the accuracy of the local harmonic method under circumstances in which the excess entropy associated with the formation of a defect is very small. Our data demonstrate that while the errors associated with determining the vacancy formation entropy in the local harmonic model are large, a simple extension to the local harmonic method yields thermodynamic properties comparable to that obtained in the quasiharmonic model, but with much higher computational efficiency.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. J. Gillan, J. Phys.: Condens. Matter 1, 689 (1989).

    CAS  Google Scholar 

  2. 2.

    G. Jaccuci, R. Taylor, A. Tenenbaum and N. Doan, J. Phys. F: Metal Phys. 11, 793 (1981).

    Article  Google Scholar 

  3. 3.

    G. Jaccuci and M. Ronchetti, Solid State Com. 33, 35 (1980).

    Article  Google Scholar 

  4. 4.

    D. R. Squire and W. G. Hoover, J. Chem. Phys. 50, 701 (1969).

    CAS  Article  Google Scholar 

  5. 5.

    S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    CAS  Article  Google Scholar 

  6. 6.

    L. Zhao, R. Najafabadi and D. J. Srolovitz, Modeling and Simulation in Mat. Sci. Eng., in press.

  7. 7.

    R. LeSar, R. Najafabadi, and D. J. Srolovitz, Phys. Rev. Lett. 63, 624 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, (Pergamon Press, New York, 1958).

    Google Scholar 

  9. 9.

    S. M. Foiles and G. B. Adams, Phys. Rev. B 40, 5909 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    R. Najafabadi, D. J. Srolovitz, and R. LeSar, J. Mater. Res. 5, 2663 (1990).

    CAS  Article  Google Scholar 

  11. 11.

    J. M. Rickman, R. Najafabadi, L. Zhao and D. J. Srolovitz, J. Phys: Condensed Matter 4, 4923 (1992).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency through the Office of Naval Research, Grant No. N00014-91-J-4019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, L., Najafabadl, R. & Srolovitz, D.J. Methods for Determining Vacancy Formation Thermodynamic. MRS Online Proceedings Library 291, 455–460 (1992). https://doi.org/10.1557/PROC-291-455

Download citation