Direct Activity Measurements in Liquid Ag-Au-Ge System and Its Solution Model Development by Computational Techniques

Abstract

Ag activities in the Ag-Au-Ge solution were determined by the mass spectrometric analysis of effusates from a unique valved Knudsen cell at 1416 K. A mathematical model was established for Ag activity coefficient as a function of alloy composition. Activities of Au and Ge were calculated by numerical ternary Gibbs-Duhem integration on a spreadsheet. The data obtained from this investigation show that the activities on all three binary systems occurring in the ternary system are in good agreement with accepted literature values. The behavior of all pseudo binaries was found to be consistent with Darken’s quadratic formalism. Darken surface of Ag is shown.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    S. M. Howard, Met. Trans. B, 20B, 845–52 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    J. L. Margrave, The Characterization of High Temperature Vapors, (John Wiley and Sons, New York, 1967), p. 225.

    Google Scholar 

  3. 3.

    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. Wagman: Selected Values of the Thermodynamic Properties of Elements, (ASM, Metals Park, OH, 1973), pp. 21, 51, and 207.

    Google Scholar 

  4. 4.

    L. S. Darken, Trans. Met. Soc. AIME, 239, 80–9 (1967).

    CAS  Google Scholar 

  5. 5.

    L. S. Darken, Trans. Met. Soc. AIME, 239, 90–6 (1967).

    CAS  Google Scholar 

  6. 6.

    L. S. Darken, J. Amer. Chem. Soc. 72, 2909–14 (1950).

    CAS  Article  Google Scholar 

  7. 7.

    K. C. Chou, Scientia Sinica 21, 73–86 (1978).

    CAS  Google Scholar 

  8. 8.

    Q. Yu, PhD thesis. South Dakota School of Mines and Technology, 1991.

  9. 9.

    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, (ASM. Metals Park, OH, 1973), pp. 30 and 60.

    Google Scholar 

  10. 10.

    L. Martin-Garin, C. Chatillon and M. Allibert, J. Less - Common Metals 63, 9–23 (1979).

    Article  Google Scholar 

  11. 11.

    G. I. Batalin, E. A. Beloborodova, and V. A. Stukalo, Russ. J. Phys. Chem. 45, 1533 (1971) [Zh. Fig. Khim. 45. 2697 (1971)].

    Google Scholar 

  12. 12.

    B. Predel and H. Bankstahl, J. Less - Common Metals 43, 191–203 (1975).

    CAS  Article  Google Scholar 

  13. 13.

    V. N. Eremenko, G. M. Lukashenko, and V. L. Pritula, EV. Akad. Nauk SSSR. Neorg. Mater. 3, 1584–90 (1967).

    CAS  Google Scholar 

  14. 14.

    C. Wagner and G. Engelhardt, Z. Physik. Chem. A159, 241–67 (1932).

    CAS  Google Scholar 

  15. 15.

    R. A. Oriani. Acta Met. 4, 15–25 (1956).

    CAS  Article  Google Scholar 

  16. 16.

    B. Predel and D. W. Stein, Z. Naturforsch 26A (4), 722–34 (1971).

    Article  Google Scholar 

  17. 17.

    J. P. Hager, S. M. Howard, and J. H. Jones, Met. Trans. 4, 2383–8 (1973).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Foundation and the State of South Dakota for funding the equipment at SDSMT. One of the author, Qiling Yu, wishes to express his great appreciation to South Dakota Mining and Mineral Resources and Research Institute for the support under fellowship grants during this investigation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiling Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, Q., Howard, S.M. Direct Activity Measurements in Liquid Ag-Au-Ge System and Its Solution Model Development by Computational Techniques. MRS Online Proceedings Library 291, 425–430 (1992). https://doi.org/10.1557/PROC-291-425

Download citation