The Importance of Microstructural Instability in Determining The Mechanical Behaviour of Cubic Titanium Trialuminides


Cubic trialuminides deform by the movement of <110> dislocations which are clearly dissociated as APB superdislocations at high temperatures, with debate about whether these are dissociated as APB or SISF superdislocations at low temperatures. These materials are characterized by the following mechanical behaviour: (i) strength variable with ternary element addition or titanium content; (ii) mild strength anomaly at high temperature, sometimes; (iii) serrations in stress-strain curve at intermediate temperatures; (iv) low tensile ductility (≈0) at room temperature, increasing at higher temperatures, with an intermediate temperature minimum.

These properties are explained by the fine microstructure and its variation locally and with temperature: (a) a tetragonal component of order in ternary alloys in addition to the basic L12 order, varying with ternary element and content; (b) precipitation (sometimes on dislocations) during high temperature testing - accounting for the strength anomaly; (c) extra-ordinarily rapid solute collection at dislocations and APB’s - accounting for strain aging and minimum ductility phenomena; (d) strain relaxation at crack tips restricted to single slip planes by the structural modification produced by shear - making a major contribution to brittleness.

All these processes are particularly acute in the titanium trialuminides because of the structural instabilities involved, and the fast kinetics of atom rearrangement; thus low temperatures during testing or during cooling after prior heat treatment play a major role. Similar effects may be of importance in other intermetallics such as FeAl, TiAl.

This is a preview of subscription content, access via your institution.


  1. 1.

    K.S. Kumar and J.R. Pickens, Scripta Metall. 22, 1015 (1988).

    CAS  Article  Google Scholar 

  2. 2.

    K.S. Kumar and S.A. Brown, Acta Metall. Mater. 40, 1923 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    S. Zhang, J.P. Nic, W.W. Milligan and D.E. Mikkola, Scripta Metall. Mater. 24, 1441 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    Z.L. Wu, D.P. Pope and V. Vitek, Scripta Metall. Mater. 24, 2187 (1990).

    CAS  Article  Google Scholar 

  5. 5.

    R. Lerf and D.G. Morris, Acta Metall. Mater. 39, 2419 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    J.P. Nic, S. Zhang and D.E. Mikkola, Scripta Metall. 24, 1099 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    G. Tichy, V. Vitek and D.P. Pope, Phil. Mag. A53, 467 (1986).

    Article  Google Scholar 

  8. 8.

    G. Tichy, V. Vitek and D.P. Pope, Phil. Mag. A53, 485 (1986).

    Article  Google Scholar 

  9. 9.

    T. Takasugi, S. Hirakawa, O. Izumi, S. Ono and S. Watanabe, Acta Metall. 35, 2015 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    M.B. Winnicka and R.A. Varin, Scripta Metall. Mater. 25, 2297 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    D.G. Morris, R. Lerf and G. Hollrigl, EUROMAT 91, Proc. 2nd European Conf. on Advanced Structural Materials, Vol. 2, The Institute of Metals, London, p. 398 (1992).

    CAS  Google Scholar 

  12. 12.

    S. Zhang, J.P. Nie and D.E. Mikkola, Scripta Metall. Mater. 24, 57 (1990).

    CAS  Article  Google Scholar 

  13. 13.

    E.P. George, J.A. Horton, W.D. Porter and J.H. Schneibel, J. Mater. Res. 5, 1639 (1990).

    CAS  Article  Google Scholar 

  14. 14.

    D.G. Morris, J. Mater. Res. 7, 303 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    H. Gengxiang, C. Shipu, W. Xiaohua and C. Xiaofu, J. Mater. Res. 6, 957 (1991).

    Article  Google Scholar 

  16. 16.

    H. Inui, D.E. Luzzi, W.D. Porter, D.P. Pope, V. Vitek and M. Yamaguchi, Phil. Mag. A65, 245 (1992).

    Article  Google Scholar 

  17. 17.

    P. Veyssiere and D.G. Morris, Phil. Mag., in press.

  18. 18.

    D.G. Morris and S. Günther, Acta Metall, et Mater., 40, 3065 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    L. Potez, G. Lapasset and L.P. Kubin, Scripta Metall. Mater. 26, 841 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    M. Yamaguchi, Y. Umakoshi and T. Yamane, Mater. Res. Soc. Symp. Proc., Vol. 81, Materials Research Society, Pittsburgh, p. 275 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    D.G. Morris, Scripta Metall. Mater. 25, 713 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    D.G. Morris, Phil. Mag. A65, 389 (1992).

    Article  Google Scholar 

  23. 23.

    A. Korner and G. Schoeck, Phil. Mag. A61, 909 (1991).

    Google Scholar 

  24. 24.

    D.G. Morris, Scripta Metall. Mater. 26, 733 (1992).

    CAS  Article  Google Scholar 

  25. 25.

    N. Brown, Phil. Mag. 4, 693 (1959).

    CAS  Article  Google Scholar 

  26. 26.

    L.E. Popov, E.V. Kozlov and N.S. Golosov, Phys. Stat. Sol. 13, 569 (1966).

    CAS  Article  Google Scholar 

  27. 27.

    N.S. Golosov, L. Ya. Pudan and L.E. Popov, Phys. Stat. Sol. 11, 123 (1972).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, D.G., Gunther, S. & Lerf, R. The Importance of Microstructural Instability in Determining The Mechanical Behaviour of Cubic Titanium Trialuminides. MRS Online Proceedings Library 288, 177–182 (1992).

Download citation