The Luminescence Mechanism of Porous Silicon

Abstract

We report resonantly excited photoluminescence (PL) spectroscopy of highly porous silicon. In the PL spectra we observe satellite structure due to the participation of momentum-conserving phonons in the optical transitions. The momentum-conserving role of these phonons, together with their energies and relative coupling strengths, demonstrate beyond doubt that crystalline silicon, which has already been shown to be the dominant constituent of unoxidised porous silicon, also forms the luminescent material. We show that the theory of quantum confinement in crystalline silicon wires can explain our results and those of other experiments, if the electron-hole interaction, and the localisation of carriers by fluctuations in wire width, are taken into account.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    CAS  Article  Google Scholar 

  2. 2.

    P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, to be published.

  3. 3.

    A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott and A. Qteish, Phys. Rev. Lett. 69, 1232 (1992).

    CAS  Article  Google Scholar 

  4. 4.

    P. J. Dean, J. R. Haynes, and W. F. Flood, Phys. Rev. 161, 711 (1967).

    CAS  Article  Google Scholar 

  5. 5.

    K. L. Shaklee and R. E. Nahory, Phys. Rev. Lett. 24, 942 (1970); T. Nishino, M. Takeda, and Y. Hamakawa, Solid State Commun. 14, 627 (1974).

    CAS  Article  Google Scholar 

  6. 6.

    A. M. Stoneham, ‘Theory of Defects in Solids’ (Clarendon Press, Oxford, 1975), Chapter 10.

    Google Scholar 

  7. 7.

    S. Permogorov, Phys. Stat. Sol. (b)68, 9 (1975).

    Article  Google Scholar 

  8. 8.

    E. Cohen and M. D. Sturge, Phys. Rev. B 25, 3828 (1982).

    CAS  Article  Google Scholar 

  9. 9.

    Experiments reveal a minimum value of exciton energy loss, corresponding to the singlet-triplet splitting of the exciton2.

  10. 10.

    A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    N. Koshida, Y. Kiuchi, and S. Yoshimura, Proc. 10th Symp. Photoelectronic Imaging Devices, London, 1991 (IOP Publ., Bristol), 377 (1992).

    Google Scholar 

  12. 12.

    V. Petrova-Koch, T. Muschik, V. Gavrilenko, and F. Koch, J. Lumin., in press.

  13. 13.

    The wire structure can be converted into dots if enough silicon is consumed. TEM studies of heavily oxidised porous silicon show that in this material the crystalline silicon wire structure has become essentially disconnected, leaving an array of silicon nanocrystallites in a porous oxide matrix (A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Dosser, this conference).

  14. 14.

    H. Koyama and N. Koshida, Ext. Abstr. Int’l. Conf. Solid State Devices and Materials, Yokohama, 1991 (Business Center for Academic Societies Jpn., Tokyo), 314 (1991).

    Google Scholar 

  15. 15.

    N. Koshida and H. Koyama, Optoelectronics - Devices and Technologies 7, 103 (1992).

    CAS  Google Scholar 

  16. 16.

    N. Koshida and H. Koyama, Mat. Res. Soc. Symp. Proc. 256 219 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    P. M. M. C. Bressers, J. W. J. Knapen, E. A. Meulenkamp, and J. J. Kelly, Appl. Phys. Lett. 61, 108 (1992).

    CAS  Article  Google Scholar 

  18. 18.

    L. T. Canham, W. Y. Leong, M. I. J. Beale, T. I. Cox and L. Taylor, Appl. Phys. Lett. 61, 2563 (1992).

    CAS  Article  Google Scholar 

  19. 19.

    A. Halimaoui, G. Bomchil, C. Oules, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, Appl. Phys. Lett. 59, 304 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    L. T. Canham, unpublished work.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Calcott, P.D.J., Nash, K.J., Canham, L.T. et al. The Luminescence Mechanism of Porous Silicon. MRS Online Proceedings Library 283, 143–148 (1992). https://doi.org/10.1557/PROC-283-143

Download citation