Abstract
We report resonantly excited photoluminescence (PL) spectroscopy of highly porous silicon. In the PL spectra we observe satellite structure due to the participation of momentum-conserving phonons in the optical transitions. The momentum-conserving role of these phonons, together with their energies and relative coupling strengths, demonstrate beyond doubt that crystalline silicon, which has already been shown to be the dominant constituent of unoxidised porous silicon, also forms the luminescent material. We show that the theory of quantum confinement in crystalline silicon wires can explain our results and those of other experiments, if the electron-hole interaction, and the localisation of carriers by fluctuations in wire width, are taken into account.
This is a preview of subscription content, access via your institution.
References
- 1.
L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
- 2.
P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, to be published.
- 3.
A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott and A. Qteish, Phys. Rev. Lett. 69, 1232 (1992).
- 4.
P. J. Dean, J. R. Haynes, and W. F. Flood, Phys. Rev. 161, 711 (1967).
- 5.
K. L. Shaklee and R. E. Nahory, Phys. Rev. Lett. 24, 942 (1970); T. Nishino, M. Takeda, and Y. Hamakawa, Solid State Commun. 14, 627 (1974).
- 6.
A. M. Stoneham, ‘Theory of Defects in Solids’ (Clarendon Press, Oxford, 1975), Chapter 10.
- 7.
S. Permogorov, Phys. Stat. Sol. (b)68, 9 (1975).
- 8.
E. Cohen and M. D. Sturge, Phys. Rev. B 25, 3828 (1982).
- 9.
Experiments reveal a minimum value of exciton energy loss, corresponding to the singlet-triplet splitting of the exciton2.
- 10.
A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).
- 11.
N. Koshida, Y. Kiuchi, and S. Yoshimura, Proc. 10th Symp. Photoelectronic Imaging Devices, London, 1991 (IOP Publ., Bristol), 377 (1992).
- 12.
V. Petrova-Koch, T. Muschik, V. Gavrilenko, and F. Koch, J. Lumin., in press.
- 13.
The wire structure can be converted into dots if enough silicon is consumed. TEM studies of heavily oxidised porous silicon show that in this material the crystalline silicon wire structure has become essentially disconnected, leaving an array of silicon nanocrystallites in a porous oxide matrix (A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Dosser, this conference).
- 14.
H. Koyama and N. Koshida, Ext. Abstr. Int’l. Conf. Solid State Devices and Materials, Yokohama, 1991 (Business Center for Academic Societies Jpn., Tokyo), 314 (1991).
- 15.
N. Koshida and H. Koyama, Optoelectronics - Devices and Technologies 7, 103 (1992).
- 16.
N. Koshida and H. Koyama, Mat. Res. Soc. Symp. Proc. 256 219 (1992).
- 17.
P. M. M. C. Bressers, J. W. J. Knapen, E. A. Meulenkamp, and J. J. Kelly, Appl. Phys. Lett. 61, 108 (1992).
- 18.
L. T. Canham, W. Y. Leong, M. I. J. Beale, T. I. Cox and L. Taylor, Appl. Phys. Lett. 61, 2563 (1992).
- 19.
A. Halimaoui, G. Bomchil, C. Oules, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, Appl. Phys. Lett. 59, 304 (1991).
- 20.
L. T. Canham, unpublished work.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Calcott, P.D.J., Nash, K.J., Canham, L.T. et al. The Luminescence Mechanism of Porous Silicon. MRS Online Proceedings Library 283, 143–148 (1992). https://doi.org/10.1557/PROC-283-143
Published:
Issue Date: