Formation and Characterization of Ohmic Contacts on Diamond


Low resistance ohmic contacts have been fabricated on a naturally occurring lib diamond crystal and on polycrystalline diamond films by B ion-implantation and subsequent Ti/Au bilayer metallization. A high B concentration was obtained at the surface by ion implantation, a postimplant anneal and a subsequent chemical removal of the graphite layer. A bilayer metallization of Ti followed by Au, annealed at 850°C, yielded specific contact resistance values (as measured using a standard transmission line model (TLM) pattern) of the order of 10−5 Ω cm2 for chemical vapor deposition (CVD) grown polycrystalline films and the natural lib crystal. Specific contact resistance values have also been determined from circular TLM measurements on CVD films and the values compared to those from standard TLM measurements. These contacts were stable to a measurement temperature of ∼400°C and no degradation due to temperature cycling was observed.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. T. Collins, Semicond. Sci. Technol., 4, 605 (1989).

    CAS  Article  Google Scholar 

  2. [2]

    K. Shenai, R. Scott and B. J. Baliga, IEEE Trans. E. D.36, 1811 (1989).

    CAS  Article  Google Scholar 

  3. [3]

    R. J. Trew, J-B. Yan and P. M. Mock, {ibid.}, 79, 598 (1991).

    CAS  Google Scholar 

  4. [4]

    R. F. Davis, in Tech. Papers 4th Int. High Frequency Power Conversion (Intertec Communications Inc., Ventura, CA) pp. 81, May 1989.

    Google Scholar 

  5. [5]

    K. L. Moazed, J. R. Zeidler and M. J. Taylor, J. Appl. Phys., 68, 2246, (1990).

    CAS  Article  Google Scholar 

  6. [6]

    C. A. Hewett, J. R. Zeidler, M. J. Taylor, C. R. Zeisse and K. L. Moazed, in New Diamond Science and Tech, edited by R. Messier, J.T. Glass, J.E. Butler and R. Roy, (Mater. Res. Soc., Pittsburgh, PA 1991), p.1107.

    Google Scholar 

  7. [7]

    G. Braunstein and R. Kalish, J. Appl. Phys., 54, 2106 (1983).

    CAS  Article  Google Scholar 

  8. [8]

    J. F. Prins, J. Phys. D: Appl. Phys., 22, 1562 (1989).

    CAS  Article  Google Scholar 

  9. [9]

    V. Venkatesan and K. Das, IEEE Electron Dev. Lett., EDL-13, 126 (1992).

    Article  Google Scholar 

  10. [10]

    K. Kobashi, K. Nishimura, Y. Kawate and T. Horiuchi, Phys. Rev. B, 384067 (1988).

    CAS  Article  Google Scholar 

  11. [11]

    G. K. Reeves, Solid State Electronics, 23, 487 (1980).

    CAS  Article  Google Scholar 

  12. [12]

    M. Geis, Proc. IEEE, 79, 669 (1991).

    CAS  Article  Google Scholar 

  13. [13]

    J. A. von Windheim, D.M. Malta, V. Venkatesan and K. Das, to be presented at the Electronic Materials Conference, TMS, Boston, MA, June 24–26, 1992.

  14. [14]

    G. K. Reeves and H. B. Harrison, IEEE Electron Dev. Lett., EDL-3, 111 (1982).

    Article  Google Scholar 

  15. [15]

    D. G. Zhu and D. F. Wu, Acta Physica Sinica, 36, 752 (1987).

    Article  Google Scholar 

  16. [16]

    D. G. Zhu, Solid State Electronics, 34, 1165 (1991).

    Article  Google Scholar 

Download references


The authors are grateful to M. L. Hartsell, Drs. L. S. Piano and C. Kao, for providing the diamond films used in this study; Drs. J. A. von Windheim and D. L. Dreifus for their expert advice and support in circular TLM measurements and also for providing the Hall data; R. B. Henard for assistance in metallization; L. W. Linholm, National Institute of Standards & Technology for suggestions on circular TLM measurements: G. A. Kim, Edge Technologies for diamond films polishing; and Dr. L. J. Kroko for providing ion implantation services.

Author information



Corresponding authors

Correspondence to V. Venkatesan or D.M. Malta or K. Das.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venkatesan, V., Malta, D. & Das, K. Formation and Characterization of Ohmic Contacts on Diamond. MRS Online Proceedings Library 270, 425–430 (1992).

Download citation