Carbon Aerogels and Xerogels


The aqueous polycondensation of resorcinol with formaldehyde proceeds through a sol-gel transition and results in the formation of highly crosslinked, transparent gels. If the solvent is simply evaporated from the pores of these gels, large capillary forces are exerted and a collapsed structure known as a xerogel is formed. In order to preserve the gel skeleton and minimize shrinkage, the aforementioned solvent or its substitute must be removed under supercritical conditions. The microporous material that results from this operation is known as an aerogel. p]Because resorcinol-formaldehyde aerogels and xerogels consist of a highly crosslinked aromatic polymer, they can be pyrolyzed in an inert atmosphere to form vitreous carbon monoliths. The resultant porous materials are black in color and no longer transparent, yet they retain the ultrafine cell size (< 50 nm), high surface area (600-800 m2 /g), and the interconnected particle morphology of their organic precursors. The thermal, acoustic, mechanical, and electrical properties of carbon aerogels/xerogels primarily depend upon polymerization conditions and pyrolysis temperature. In this paper, the chemistry-structure-property relationships of these unique materials will be discussed in detail.

This is a preview of subscription content, access via your institution.


  1. [1]

    S.T. Benton and C.R. Schmitt, Carbon, 10, 185 (1972).

    CAS  Article  Google Scholar 

  2. [2]

    R.W. Pekala and R.W. Hopper, J. Mat. Sci., 22, 1840 (1987).

    CAS  Article  Google Scholar 

  3. [3]

    A.P. Sylwester, J.H. Aubert, P.B. Rand, C. Arnold.Jr., and R.L. Clough, Am. Chem. Soc. PMSE Preprint, 57, 113 (1987).

    CAS  Google Scholar 

  4. [4]

    H.C. Geer, in Encyclopedia of Polymer Science and Technology, edited by H.F. Mark, N.G. Gaylord, and N.M. Bikales (Interscience, New York, 1970), p. 102.

  5. [5]

    L.L. Hench and J.K. West, Chem. Rev., 90, 33 (1990).

    CAS  Article  Google Scholar 

  6. [6]

    D.R. Ulrich, Chem. & Eng. News, 6(1), 28 (1990).

    Article  Google Scholar 

  7. [7]

    S.J. Teichner, G.A. Nicolaon, M.A. Vicarini, G.E.E. Gardes, Adv. Coll. Interf. Sci., 5, 245 (1976).

    CAS  Article  Google Scholar 

  8. [8]

    C.J. Brinker and G.W. Scherer, Sol-Gel Science, (Academic Press, New York, 1990).

    Google Scholar 

  9. [9]

    J. Fricke, Sci. Am., 258(5), 92 (1988).

    CAS  Article  Google Scholar 

  10. [10]

    Aerogels, edited by J. Fricke, (Springer-Verlag, New York, 1986).

    Google Scholar 

  11. [11]

    L.W. Hrubesh, T.M. Tillotson, and J.F. Poco, in Better Ceramics Through Chemistry IV, edited by C.J. Brinker, D.E. Clark, D.R. Ulrich, and B.J. Zelinski, (Mat. Res. Soc. Proc. 180, Pittsburgh, PA, 1990), pp. 315–319.

    CAS  Article  Google Scholar 

  12. [12]

    R.W. Pekala, J. Mat. Sci., 24, 3221 (1989).

    CAS  Article  Google Scholar 

  13. [13]

    R.W. Pekala and F.M. Kong, Polym. Prpts., 30(1), 221 (1989).

    CAS  Google Scholar 

  14. [14]

    C.T. Alviso and R.W. Pekala, Polym. Prpts., 32(3), 242 (1991).

    CAS  Google Scholar 

  15. [15]

    R.W. Pekala and C.T. Alviso, in Better Ceramics Through Chemistry IV, edited by C.J. Brinker, D.E. Clark, D.R. Ulrich, and B.J. Zelinski, (Mat. Res. Soc. Proc. 180, Pittsburgh, PA, 1990), pp. 791–795.

    CAS  Article  Google Scholar 

  16. [16]

    R.W. Pekala, C.T. Alviso, and J.D. LeMay, J. Non-Cryst. Solids, 125,67 (1990).

    CAS  Article  Google Scholar 

  17. [17]

    S.S. Hulsey, C.T. Alviso, F.M. Kong, and R.W. Pekala, in this MRS proceedings.

  18. [18]

    X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Frickes, and R.W. Pekala, Science, 255, 971 (1992).

    CAS  Article  Google Scholar 

  19. [19]

    S.L. diVittorio, M.S. Dresselhaus, M. Endo, J-P. Issi, L. Piraux, and V. Bayot, J. Mat. Res., 6(4), 778 (1991).

    CAS  Article  Google Scholar 

  20. [20]

    J.D. LeMay, R.W. Hopper, L.W. Hrubesh, and R.W. Pekala, MRS Bulletin, 15(12), 19 (1990).

    CAS  Article  Google Scholar 

  21. [21]

    R.W. Pekala and F.M. Kong, J. de Physique Coll. Suppl., 50(4), C4–33 (1989).

    Google Scholar 

  22. [22]

    K.D. Keefer and D.W. Schaefer, Phys. Rev. Lett., 56(20), 2199 (1986).

    Article  Google Scholar 

  23. [23]

    D.W. Schaefer, J.P. Wilcoxon, K.D. Keefer, B.C. Bunker, R.K. Pearson, I.M. Thomas, and D.E. Miller, in Physics and Chemistry of Porous Media II, edited by J.R. Banavar, J. Koplik, and K.W. Winkler, (AIP Conf. Proc. 154, New York, 1986), pp. 63–80.

    Article  Google Scholar 

  24. [24]

    G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fibre, Glass and Char, (Cambridge Univ. Press, New York, 1976) p. 84.

    Google Scholar 

  25. [25]

    L.J. Gibson and M.F. Ashby, Proc. Royal Soc. Long., 382(A), 43 (1982).

    CAS  Google Scholar 

  26. [26]

    J. Gross, J. Fricke, R.W. Pekala, and L.W. Hrubesh, Phys. Rev. B, in press.

  27. [27]

    A.W. P. Fung and M.S. Dresselhaus (private communication).

  28. [28]

    D.S. Knight and W.B. White, J. Mat. Res., 4, 385 (1989).

    CAS  Article  Google Scholar 

Download references


This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract #W-7405-ENG-48. The author would like to thank the following individuals for their technical contributions to this research project: Dr. James LeMay (mechanical properties), Suzy Hulsey (gas adsorption analyses), Dr. Dale Schaefer at SNLA (small angle x-ray scattering), Professor Jochen Fricke and Xianping Lu at the University of Wurzburg (thermal conductivity), and Professor Mildred Dresselhaus and Alex Fung at MIT (Raman spectra; low temperature resistivity).

Author information



Corresponding authors

Correspondence to Richard W. Pekala or Cynthia T. Alviso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pekala, R.W., Alviso, C.T. Carbon Aerogels and Xerogels. MRS Online Proceedings Library 270, 3–14 (1992).

Download citation