Chemical and Structural Effects on Diamond C(111)-(2×1) Surface Exposed to F, H and Hydrocarbon Species

Abstract

Adsorption and subsequent surface processes of hydrogen and hydrocarbon species on the diamond C(111)-(2xF) bare surface have been investigated by AES, XPS, LEED, TDS and laser non-linear spectroscopies (SHG and SFG) under ultrahigh vacuum condition. Extremely low coverage of atomic H causes the transition of the hare (2×1) surface to the (1×1) structure. Exposure of the bare (2×1) surface to CIIx species from hot filament activated methane leads to the formation mainly of CH3 species. The conversion of the surface structure from (2×1) to (1×1) with exposure does take place but not as easily as for hydrogen. These studies are now being extended to adsorption of F by exposures to XeF2 There are two stages of saturation for 17 adsorption on the C(111)-(2xF) surface. This is interpreted to indicate that there are at least two adsorption sites for the F atoms. Whereas adsorption of II atoms at coverages less than 5% of a monolayer causes the surface lattice transition from (2×1) to (1×1) structure, the (2×1) structure is retained at all levels of fluorine adsorption. However the C(111)-(1x1) surface with over half a monolayer of II adsorption behaves quite differently with respect to F adsorption.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. C. Angus and C. C. Hayman, Science241, 915 (1988).

    Article  Google Scholar 

  2. 2.

    P.K. Bachmann and R. Messier, C and EN67(20), 24 (1989).

    CAS  Google Scholar 

  3. 3.

    D.E. Patterson, B.J. Bai, C.J. Chu, R.H. Hauge and J.L. Margrave, in New Diamond Science and Technology, (Proc. 2nd Int. Conf) ed. by R. Messier and J.T. Glass (Mat. Res. Soc., Pittsburgh, PA, 1991), p.433.

    Google Scholar 

  4. 4.

    D.E. Patterson, C.J. Chu, B.J. Bai, N.J. Komplin, R.H. Hauge and I.L. Margrave, in Applications of Diamond Films and Related Materials, ed. by Y. Tzeng, M. Yoshikawa, M. Murakawa and A. Feldman (Elsevier Science Publishers B.V., 1991), p.569.

  5. 5.

    S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, J. Mat. Sci.173106 (1982).

    CAS  Article  Google Scholar 

  6. 6.

    S. Matsumoto and Y. Matsui, J. Mat. Sci.18, 1785 (1983).

    CAS  Article  Google Scholar 

  7. 7.

    N. Fujimori, T. Imai and A. Doi, Vacuum36, 99 (1986).

    CAS  Article  Google Scholar 

  8. 8.

    M. Kamo, H. Yurimoto and Y. Sato, Appl. Surf. Sci.33/44, 553 (1988).

    Article  Google Scholar 

  9. 9.

    M.W. Geiss, MRS Symp. Proc.115 (1990).

    Google Scholar 

  10. 10.

    C.J. Chu, M.P. D'Evelyn, R.H. Hauge and J.L. Margarave, J. Appl. Phys.70, 1695 (1991).

    CAS  Article  Google Scholar 

  11. 11.

    J.J. Lander and J. Morrison, Surf. Sci.4, 1 (1977).

    Google Scholar 

  12. 12.

    P.G. Laurie and J.M. Wilson, Surf Sci.65, 453 (1977).

    Article  Google Scholar 

  13. 13.

    B.J. Waklawski, D.T. Pierce, N. Swanson and R.J. Celotta, J. Vac. Sci. Technol.21, 368 (1982).

    Article  Google Scholar 

  14. 14.

    B.B. Pate, Surf. Sci.165, 83 (1986).

    CAS  Article  Google Scholar 

  15. 15.

    A.V. Hamza, G.D. Kubiak and R.H. Stulen, Surf. Sci.206, L833 (1988).

    CAS  Article  Google Scholar 

  16. 16.

    D. Vanderbilt and S.G. Louie, Phys. Rev.B30, 6118 (1984).

    Article  Google Scholar 

  17. 17.

    K.C. Pandey, Phys. Rev.B25, 4338 (1982).

    Article  Google Scholar 

  18. 18.

    G.D. Kubiak and K.W. Kolasinski, Phys. Rev.B39, 1381 (1989).

    Article  Google Scholar 

  19. 19.

    Y. Mitsuda, T. Yamada, T.J. Chuang, H. Seki, R.P. Chin, J.Y. Huang, and Y.R. Shen, Surf. Sci.257, 1633 (1991).

    Article  Google Scholar 

  20. 20.

    R.P. Chin, J.Y. Huang, Y.R. Shen, T.J. Chuang, H. Seki and M. Buck, Phys. Rev.1552 (1992).

  21. 21.

    Y.R. Shen, Nature337, 519 (1989).

    CAS  Article  Google Scholar 

  22. 22.

    R.P. Chin, J.Y. Huang, Y.R. Shen, T.J. Chuang and H. Seki, APS Bulletin37, 331 (1992); J.Y. Huang, R.P. Chin, Y.R. Shen, T. Yamada, T.J. Chuang, H. Seki and Y. Mitsuda (to be published).

    Google Scholar 

  23. 23.

    Y. Yamada, T.J. Chuang, and H. Seki, Molecular Physics, in press.

  24. 24.

    M.P. Seah, Surf. Sci.32, 703 (1972).

    CAS  Article  Google Scholar 

Download references

Acknowledgement

We express our thanks to Dr. J. Huang, R. Chin and Professor Y.R. Shen of Department of Physics, University of California, Berkeley, for their collaboration and many useful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Taro Yamada or T.J. Chuang or H. Seki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamada, T., Chuang, T. & Seki, H. Chemical and Structural Effects on Diamond C(111)-(2×1) Surface Exposed to F, H and Hydrocarbon Species. MRS Online Proceedings Library 270, 383–388 (1992). https://doi.org/10.1557/PROC-270-383

Download citation