The Role of Atomic Hydrogen and Oxygen in Low Temperature Growth of Diamond by Microwave Plasma Assisted CVD


Diamond films grown in the microwave plasmas of CO(7-8%)-O2(0-2.2%)-H2 systems in the range of 130-750°C were characterized by scanning electron microscopy, Raman spectroscopy, and cathodoluminescence (CL) studies. The films grown in the CO-O2-H2 system had much better crystallinity than those grown in the CO-H2 system. This was because oxygen extremely purified diamond films by suppressing polyacetylene inclusion, and prohibited the vacancy formation in the crystallites. These oxygen functions have indicated the possibility that high quality diamond films (FWHM of the diamond Raman peak =4.0-4. 1cm−1) close to natural diamond (FWHM=3.0cm−1) were obtained in the CO(8%)-O2(2.2%)-H2 system between 400 and 750°C. Though crystallinity deterioration occurred at 130°C, the obtained film (FWHM=10.2cm−1) in the CO(8%)-O2(2.2%)-H2 system was of good crystallinity comparable to those (FWHM=7-21cm−1) grown by conventional CVD processes and gas systems between 590 and 1327°C. The CO-O2-H2 microwave plasma was concluded to be one of the best environment for the low temperature growth of highly purified diamond films of good crystallinity.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. P. Ong and R. P. H. Chang, Appl. Phys. Lett.55, 2063, (1989).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Liou, A. Inspektor, R. Weimer, and R. M. Messier, Appl. Phys. Lett.55, 631, (1989).

    CAS  Article  Google Scholar 

  3. 3.

    J. Wei, H. Kawarada, J. Suzuki, and A. Hiraki, J. Cryst. Growth99, 1201, (1990).

    CAS  Article  Google Scholar 

  4. 4.

    S. Nakano, M. Noda, H. Kusakabe, H. Shimizu, and S. Maruno, Jpn. J. Appl. Phys.22, 1511(1990)

    Article  Google Scholar 

  5. 5.

    Y. Muranaka, H. Yamashita, and H. Miyadera, J. Mater. Sci.26, 3235, (1991).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Muranaka, H. Yamashita, and H. Miyadera, J. Appl. Phys.69, 8145, (1991).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Muranaka, H. Yamashita, H. Miyadera, Thin Solid Films195, 257, (1991).

    CAS  Article  Google Scholar 

  8. 8.

    P. J. Dean, Phys. Rev.139, A588 (1965).

    Article  Google Scholar 

  9. 9.

    Yamamoto N, J. C. H. Spence, and D. Fathy, Phil. Mag. B, 49, 609, (1984).

    Article  Google Scholar 

  10. 10.

    V. S. Varichenko, E. D. Vorob'ev, A. M. Zaytsev, V. A. Laptev, M. I. Samoylovich, V. A. Skuratov, and V. F. Stel'makh, Sov. Phys. Semicond.21, 668, (1987).

    Google Scholar 

  11. 11.

    A. Von Engel, Electric plasmas:Their Nature and Uses (Taylor and Sons, New York,1980).

    Google Scholar 

  12. 12.

    R.A. Rudder, G. C. Hudson, J. B. Posthill, R. E. Thomas, and R. J. Markunas, Appl. Phys. Lett.52, 791, (1991).

    Article  Google Scholar 

  13. 13.

    J. J. Chang, T. D. Mantei, Appl. Phys. Lett., 59, 1170 (1991)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Matsui, H. Yabe, and Y. Hirose, Jpn. J. Appl. Phys., 29, 1552 (1990)

    CAS  Article  Google Scholar 

  15. 15.

    K. Suzuki, A. Sawabe, and T. Inuzuka, Jpn. J. Appl. Phys., 29, 153 (1990)

    CAS  Article  Google Scholar 

  16. 16.

    M Yoshikawa, G. Katagiri, H. Ishida, and A. Ishitani, Appl. Phys. Lett., 55, 2609 (1989)

    Article  Google Scholar 

  17. 17.

    A. M. Bonnot, Phys. Rev. B, 41, 6040 (1990)

    CAS  Article  Google Scholar 

  18. 18.

    S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys., 21, L183 (1982)

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Y. Muranaka or H. Yamashita or H. Miyadera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muranaka, Y., Yamashita, H. & Miyadera, H. The Role of Atomic Hydrogen and Oxygen in Low Temperature Growth of Diamond by Microwave Plasma Assisted CVD. MRS Online Proceedings Library 270, 365–370 (1992).

Download citation