Electronic Structure of Doped Buckminsterfullerene


Molecular cluster calculations within the local density approximation have been performed in a study of the electronic structure of the C60 molecule - “Buckminsterfullerene” doped with K, B and N. Calculations for the KC60 molecule, with the K atom located at the centre of the cage as well as at different positions inside or outside the cage, show how the valence 4s electron is transferred to the LUMO state of the bare C60 molecule. Doping with a B or N atom located at the centre of the cage creates a molecule with a partly occupied level of 2p character in the HOMO and LUMO gap, similar to donor and acceptor levels in the band gap of traditionally doped semiconductors. Doping by substitution of one or two of the carbon atoms in the cage with X = B or N, as modelled with the C59X1 or C58X2 clusters, gives a different structure with a splitting of the HOMO and LUMO levels in the pure C60 molecule and with the creation of acceptor and donor levels with the substitution of B and N, respectively.

This is a preview of subscription content, access via your institution.


  1. [1].

    J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse and R. E. Smalley, J. Chem. Phys.78, (1983) 1627–1637.

    CAS  Article  Google Scholar 

  2. [2].

    P. Jena, B. K. Rao, and S.N. Kahnna Eds. Physics and Chemistry of Small Clusters, Plenum Press, New York, NATO ASI Series Physics Vol. 158 (1987).

    Google Scholar 

  3. [3].

    O. Echt and E. Recknagel, Eds. Small Particles and Inorganic Clusters, Proceedings of the Fifth International Symposium on Small Particles and Iorganic Clusters, ISSPIC 5, Konstanz, Sept 1990. Z Physik D19, 1991.

    Google Scholar 

  4. [4].

    H. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, Nature318 (1985) 162–163.

    CAS  Article  Google Scholar 

  5. [5].

    R. F. Curl and R. E. Smalley, Science, 242, (1988) 1017–1022.

    CAS  Article  Google Scholar 

  6. [6].

    H. W. Kroto, Science, 242, (1988) 1139–1145.

    CAS  Article  Google Scholar 

  7. [7].

    W. Krätschmer, K. Fostiropoulos, and D.R. Huffman, Dusty Objects in the Universe, p 89(1988) Eds. E. Bussoletti and A. A. Vittone, Kluwer Academic Publ. Dordrecht, Boston London.

  8. [8].

    W. Krätschmer, K. Fostiropoulos, and D.R. Huffman, Chem. Phys. Lett.170 (1990) 167–170.

    Article  Google Scholar 

  9. [9].

    W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature347 (1990) 354–358.

    Article  Google Scholar 

  10. [10].

    Materials Research Society Symp. Proc. 206 (1991).

  11. [11].

    Fullerenes, Synthesis, Properties and Chemistry of Large Carbon Clusters, Eds. G. S. Hammond and V. J. Kuck, ACS Symposium Series 481, 1992.

    Google Scholar 

  12. [12].

    Advances in the synthesis, characterization and properties of fullerenes, J O Physics and Chemistry of Solids, Eds. J. E. Fischer and D. E. Cox.

  13. [13].

    R. C. Haddon, A. F. Hebard, M.J. Rosseinsky, D. W. Murphy, S. J. Duclos, K. B. Lyons, B. Miller, J. M. Rosamilla, R. M. Fleming, A. R. Kortan, S. H. Glarum, A. V. Makhija, A. J. Muller, R. H. Elck, S. M. Zahurak, R. Tycko, G. Dabbagh and A. F. Thiel, Nature, 350, (1991) 320–322.

    CAS  Article  Google Scholar 

  14. [14].

    A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez and A. R. Kortan, Nature, 350, (1991) 600–601.

    CAS  Article  Google Scholar 

  15. [15].

    M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahruak and A. V. Makhija, Phys. Rev. Lett.66, (1991) 2830–2832.

    CAS  Article  Google Scholar 

  16. [16].

    K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo and S. Kuroshima, Nature, 352, (1991) 222–223.

    CAS  Article  Google Scholar 

  17. [17].

    For a recent review see article on “Doping the Fullerenes” by Smalley in chapter 10 Ref. 11.

  18. [18].

    E. A. Rohlfing, D. M. Cox and A. Kaldor, J. Chem. Phys.81, (1984) 3322–3330.

    CAS  Article  Google Scholar 

  19. [19].

    J.R. Heath, S.C. O'Brien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tittel, and R.E. Smalley, J. Am. Chem. Soc.107 (1985) 7779–7780.

    CAS  Article  Google Scholar 

  20. [20].

    D.M. Cox, D.J. Trevor, K.C. Reichmann, and A. Kaldor, J. Am. Chem. Soc.108 (1986) 2457–2458.

    CAS  Article  Google Scholar 

  21. [21].

    S.C. O'Brien, J.R. Heath, R.F. Curl, and R.E. Smalley, J. Chem. Phys.88 (1988) 220–230.

    CAS  Article  Google Scholar 

  22. [22].

    D.M. Cox, K.C. Reichmann, and A. Kaldor, J. Chem. Phys.88 (1988) 1588–1597.

    CAS  Article  Google Scholar 

  23. [23].

    A. Rosén and B. Wästberg, J. Am Chem. Soc.110 (1988) 8701–8703.

    Article  Google Scholar 

  24. [24].

    A. Rosén and B. Wästberg, J. Chem. Phys.90 (1989) 2525–2526.

    Article  Google Scholar 

  25. [25].

    A. Rosén and B. Wästberg, Z. PhysikD12, (1991) 387–390.

    Google Scholar 

  26. [26].

    R. D. Johnsson, M. S. de Vries, J. Salem and C. S. Yannoni, Nature355, (1992) 239–240.

    Article  Google Scholar 

  27. [27].

    J. Cioslowski, J. Am Chem. Soc.113 (1991) 4139–4141.

    CAS  Article  Google Scholar 

  28. [28].

    J. Cioslowski and E. D. Fleischmann, J. Chem. Phys.94 (1991) 3730–3734.

    CAS  Article  Google Scholar 

  29. [29].

    A. H. H. Chang, W.C. Ermler and R. M. Pitzer, J. Chem. Phys.94 (1991) 5004–5010.

    CAS  Article  Google Scholar 

  30. [30].

    S. Saito, Materials Research Society Symp. Proc.206 (1991) 115–120.

    CAS  Article  Google Scholar 

  31. [31].

    B. Wästberg and A. Rosén, Physica Scripta44 (1991) 276–288.

    Article  Google Scholar 

  32. [32].

    L-S. Wang, O. Chenovsky, J. D. Carpenter, S-J Hwu and R. E. Smalley, J.Chem. Phys. Comm.96, (1991) 4028–4031.

    Article  Google Scholar 

  33. [33].

    T. Guo, C. Jin and R. E. Smalley, J. Phys. Chem.95, (1991) 4948–4950.

    CAS  Article  Google Scholar 

  34. [34].

    Y. Chai, T. Guo, C. Yin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford, and R. E. Smalley, J. Phys. Chem.95, (1991) 7564–7568.

    CAS  Article  Google Scholar 

  35. [35].

    A. Rosén and B. Wästberg, Surface Science, in press.

  36. [36].

    A. Rosén, Z. Physik D submitted.

  37. [37].

    W. Andreoni, F. Gygi and M. Parinello, Chem. Phys. Lett.190 (1992) 159–162.

    CAS  Article  Google Scholar 

  38. [38].

    P. Hohenberg, Phys. Rev. 136, (1964) B864–B871.

    Google Scholar 

  39. [39].

    W. Kohn and L.J. Sham, Phys. Rev.140, (1965) A1133–A1138.

    Article  Google Scholar 

  40. [40].

    U. von Barth and L. Hedin, J. Phys.C5 (1972) 1629–1642.

    Google Scholar 

  41. [41].

    D.E. Ellis and G.S. Painter, Phys. Rev.B2, (1970) 2887–2898.

    Article  Google Scholar 

  42. [42].

    A. Rosén, D.E. Ellis, H. Adachi, and F.W. Averill, J. Chem. Phys.65, (1976) 3629–3634.

    Article  Google Scholar 

  43. [43].

    M. D. Newton and R. E. Stanton, J. Am. Chem. Soc.108, (1988) 2469–2470.

    Article  Google Scholar 

  44. [44].

    K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H.C. Dorn, R. D. Johnson and M. de Vries, Science, 254, (1991) 410–412.

    CAS  Article  Google Scholar 

Download references


The authors acknowledge constructive discussion with members in the Molecular Physics Group. Financial support from STU, The National Swedish Board for Technical Development, through the research program in MICRONICS (contract 87-03403P) and STUF, Engineering Research Council of STU (contract 86-03067P), and from NFR, The Swedish Natural Science Research Council (contract F-FU 2560-128) is acknowledged.

Author information



Corresponding authors

Correspondence to Arne Rosén or Daniel Östling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosén, A., Östling, D. Electronic Structure of Doped Buckminsterfullerene. MRS Online Proceedings Library 270, 141–148 (1992). https://doi.org/10.1557/PROC-270-141

Download citation