Controlled Release of Fibroblast Growth Factor: Activity in Cell Culture

Abstract

Basic fibroblast growth factor is a multi-potent cell regulatory factor that stimulates proliferation and angiogenesis. Controlled studies of basic fibroblast growth factor in animals have been hindered by the instability of this protein. In addition, many cells appear to require the continuous addition of basic fibroblast growth factor for optimal growth and function in culture. A system for the sustained delivery of active basic fibroblast growth factor might provide both a means to conduct log-term studies on activity and provide a practical alternative to multiple growth factor additions to cell cultures. Basic fibroblast growth factor was incorporated into standard polymer matrices, but the released growth factor had lost over 99% of its bioactivity. Loss of basic fibroblast growth factor activity was found to result from both physical inactivation and adsorption of the protein to surfaces. These problems were avoided by incorporating the growth factor into calcium cross-linked alginate microspheres containing heparinsepharose beads. Basic fibroblast growth factor was incorporated into these microspheres with 71% efficiency and active growth factor was released with predictable kinetics for up to 7 weeks. Release from these microspheres was controlled by the amount of heparin within the device and could be manipulated by simply altering the heparin content during fabrication. Alginate/heparin-sepharose microspheres were placed into growing cultures of bovine aortic endothelial cells and no cytotoxic effects were observed. Furthermore, microspheres containing growth factor provided long-term stimulation of cell proliferation and maintenance of endothelial cell morphology.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. B. Sporn and A. B. Roberts, in Peptide Growth Factors and Their Receptors I, edited by M.B. Sporn and A.B. Roberts (Springer-Verlag, Berlin Heidelberg, 1990), pp 3–15.

  2. 2.

    J. Murray, L. Brown, M. Klagsbrun, and R. Langer, In Vitro 19, 743–748 (1983).

  3. 3.

    G.B. Silberstein and C.W. Daniel, Science 237, 291–293 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    W.H. Burgess and T. Maciag, Annu. Rev. Biochem. 58, 575–606 (1989).

    CAS  Article  Google Scholar 

  5. 5.

    M. Klagsbrun, Prog. Growth Factor Res. 1, 207–235 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    D.B. Rifkin and D. Moscatelli, J. Cell Biol. 109, 1–6 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    G.F. Whalen, Y. Shing and J. Folkman, Growth Factors, 1, 157–164 (1989).

    CAS  Article  Google Scholar 

  8. 8.

    A. Hayek, F.L. Culler, G.M. Beattie, A.D. Lopez, P. Cuevas and A. Baird, Biochem. Biophys. Res. Comm. 147, 876–880 (1987).

    CAS  Article  Google Scholar 

  9. 9.

    J.A. Thompson, K.D. Anderson, J.M. DiPietro, J.A. Zwiebel, M. Zametta, W.F. Anderson, Science 241, 1349–1352 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    P. Bashkin, S. Doctrow, M. Klagsbrun, C.M. Svahn, J. Folkman, and I. Vlodavsky, Biochem. 28, 1737–1743 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    W. Rhine, D. Hsieh and R. Langer, J. Pharm. Sci. 69, 265–270 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    E.R. Edelman, E. Mathiowitz, R. Langer and M. Klagsbrun, Biomaterials 12, 619–626 (1991).

    CAS  Article  Google Scholar 

  13. 13.

    D. Gospodarowicz and J. Cheng, J. Cell Physiol. 128, 475–484 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    H. Tanaka, M. Matsumura and I.A. Veliky, Biotechnol. Bioeng. 26, 53–58 (1984).

    CAS  Article  Google Scholar 

  15. 15.

    O. Smidsrod and G. Skjåk-Bræk, Trends Biotechnol. 8, 74–81 (1990).

    Article  Google Scholar 

  16. 16.

    E.R. Edelman, M.A. Nugent, L.T. Smith and M.J. Karnovsky, J. Clin. Invest. (in press).

Download references

Acknowledgements

We thank Dr. Robert Langer for helpful advice and the use of his laboratory. M.A. Nugent is supported by a National Institutes of Health Postdoctoral Fellowship (F32 GM14003). E.R. Edelman is a recipient of a Physician-Scientist Award from the National Institutes of Health (K12 AG00294).

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nugent, M.A., Chen, O.S. & Edelman, E.R. Controlled Release of Fibroblast Growth Factor: Activity in Cell Culture. MRS Online Proceedings Library 252, 273–284 (1991). https://doi.org/10.1557/PROC-252-273

Download citation