Anisotropic Si Etching by a Supersonic Cl2 Beam


Perpendicular etching profiles of n+-Si(100) are obtained with a supersonic Cl2 beam at substrate temperature of 900°C. Although small undercuts are observed just below the SiO2 mask, the side wall etching caused by the background Cl2 is almost negligible. An aspect ratio of greater than 6 and selectivity of greater than 8000 are obtained with 0.5 µm line & space mask pattern. From Arrhenius plots of etch rates, an effective activation energy of the nozzle beam etching is determined to 0.53 eV. Assuming that the reaction product is SiCl2, the reaction probability is estimated to be 19% at 900°C. Highly anisotropic etching of the Si(100) obtained here is due to the large reaction probability.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. Hara, M. Hamagaki, A. Sanda, Y. Aoyagi, S. Namba, J. Vac. Sci. Technol. B5, 366 (1987).

    Article  Google Scholar 

  2. 2.

    J.Z. Yu, T. Hara, M. Hamagaki, T. Yoshinaga, Y. Aoyagi, S. Namba, J. Vac. Sci. Technol. B6, 1626 (1988).

    Article  Google Scholar 

  3. 3.

    T. Mizutani, S. Nishimatsu, J. Vac. Sci. Technol. B7, 547 (1989).

    Article  Google Scholar 

  4. 4.

    K. Suzuki, S. Hiraoka, S. Nishimatsu, J. Appl. Phys. 64, 3697 (1988).

    CAS  Article  Google Scholar 

  5. 5.

    Q.Z. Qin, Y.L. Li, Z.K. Jin, Z.J. Zhang, Y.Y. Yang, W.J. Jia, Q.K. Zheng, Surface Science, 207, 142 (1988).

    CAS  Article  Google Scholar 

  6. 6.

    J.D. Beckerle, A.D. Johnson, Q.Y. Yang, S.T. Ceyer, J. Chem. Phys. 91, 5756 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    L.A. DeLouise, J. Chem. Phys. 94, 1528 (1991); Surface Science Letters, 244, L87 (1991).

    CAS  Article  Google Scholar 

  8. 8.

    J.R. Engstrom, M.M. Nelson, T. Engel, Surface Science, 215, 437 (1989).

    CAS  Article  Google Scholar 

  9. 9.

    R.J. Levis, C.J. Waltman, L.M. Cousins, R.G. Copeland, S.R. Leone, J. Vac. Sci. Technol. A8, 3118 (1990).

    Article  Google Scholar 

  10. 10.

    T. Miyake, S. Soeki, H. Kato, T. Nakamura, A. Namiki, Phys. Rev. B42, 11801 (1990).

    Article  Google Scholar 

  11. 11.

    T. Takahagi, A. Ishitani, H. Kuroda, Y. Nagasawa, H. Ito, S. Wakao, J. Appl. Phys. 33, 1 (1990).

    Google Scholar 

  12. 12.

    E.A. Ogryzlo, D.L. Flamm, D.E. Ibbotson, J.A. Mucha, J. Appl. Phys. 64, 6510 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    J.P. Dismukes, R. Ulmer, J. Electrochem. Soc. 118, 634 (1971).

    CAS  Article  Google Scholar 

  14. 14.

    D.J. Oostra, A. Haring, R.P. van Ingen, A.E. de Vries, J. Appl. Phys. 64, 315 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    J. Matsuo, K. Karahashi, A. Sato, S. Hijiya, Proceedings of the 13th symposium on dry process, 23(1991).

  16. 16.

    R.B. Jackman, H. Ebert, J.S. Foord, Surface Science, 176, 183 (1986).

    CAS  Article  Google Scholar 

Download references


Dr. Eiji Ikawa and Mr. Kato are acknowledged for their helpful suggestions in fabricating Si samples patterned with SiO 2. We also wish to express our appreciation to Dr. Asakawa and Dr. Kobayashi for their help with the research

Author information



Corresponding author

Correspondence to Yuden Teraoka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teraoka, Y., Uesugi, F. & Nishiyama, I. Anisotropic Si Etching by a Supersonic Cl2 Beam. MRS Online Proceedings Library 236, 183–188 (1991).

Download citation