Activation of the Si(100)/Cl2 Etching Reaction at High Cl2 Translational Energies

Abstract

Exposing a Si(100) surface to a pulsed beam of neutral Cl2 with high translational energy results in etching at a rate faster than that seen with chlorine at thermal energies. The Cl2 beam used in these experiments is produced by laser vaporization of cryogenic films. It has a broad energy distribution which can be varied by changing laser energy and film thickness. Beams with mean energies as low as 0.4 eV result in etching >10 times faster than etching by thermal Cl2. When Cl2 beams are used which have considerable flux above 3 eV, the etching rate increases by a further factor of 3.6 ± 0.6. This rate increase, which occurs at energies just above the Si-Si bond energy, suggests that kinetic energy can be efficiently utilized to break surface bonds.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y-L. Lin, Q-K. Zheng, Z-K. Jin, M. Yu, Z-K. Wu and Q-Z. Qin, J. Phys. Chem. 93, 5531 (1989).

    Article  Google Scholar 

  2. 2.

    T. Bailer, D. J. Oostra, A. E. de Vries and G. N. A. van Veen, J. Appl. Phys. 60, 2321 (1986).

    Article  Google Scholar 

  3. 3.

    H. Okano, Y. Horiike and M. Sekine, Jap. J. Appl. Phys. 24, 68 (1985).

    CAS  Article  Google Scholar 

  4. 4.

    R. Kullmer and D. Bauerle, Appl. Phys. A 47, 377 (1988).

    Article  Google Scholar 

  5. 5.

    M-C Chuang and J. W. Coburn, J. Vac. Sci. Tech. A8, 1969 (1990).

    Article  Google Scholar 

  6. 6.

    D. J. Oostra, A. Haring, R. P. van Ingen and A. E. de Vries, J. Appl. Phys. 64, 315 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    A. W. Kolfschoten, Nucl. Inst. Meth. B19/20, 1001 (1987).

    Article  Google Scholar 

  8. 8.

    R. Rossen and H. Swain, J. Vac. Sci. Tech. A5, 1595 (1987).

    Article  Google Scholar 

  9. 9.

    J. W. Coburn and Harold F. Winters, J. Appl. Phys. 50 3189 (1979)

    Article  Google Scholar 

  10. 10.

    T. Mizutani, C. J. Dale, W. K. Chu and T. M. Mayer, Nuc. Inst. Meth. B7/8, 825 (1985).

    Article  Google Scholar 

  11. 11.

    A. Manenschijn, E. van der Drift, G. C. A. M. Janssen, and S. Radelaar, J. Appl. Phys. 69, 7996 (1991).

    CAS  Article  Google Scholar 

  12. 12.

    K. Suzuki, S. Hiraoka, and S. Nishimatsu, J. Appl. Phys. 64, 3697 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    L. M Cousins and S. R. Leone, J. Mater. Res. 3, 1158 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    L. M. Cousins, R. J. Levis and S. R. Leone, J. Chem. Phys. 91, 5731 (1989).

    CAS  Article  Google Scholar 

  15. 15.

    P. J. van den Hoek, w. Ravenek, and E. J. Baerends, Phys. Rev. B. 38, 12508 (1988).

    Article  Google Scholar 

  16. 16.

    The Wiley/NBS Registry of Mass Spectral Data, F. W. McLafferty and D. B. Stauffer, eds., John Wiley and Sons, New York, 1989

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge support of this work by the U. S. Army Research office, Physics Division. Additional equipment was provided by the National Science Foundation. G. C. Weaver thanks the Department of Defense for a graduate fellowship

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francis X. Campos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Campos, F.X., Weaver, G.C., Waltman, C.J. et al. Activation of the Si(100)/Cl2 Etching Reaction at High Cl2 Translational Energies. MRS Online Proceedings Library 236, 177–182 (1991). https://doi.org/10.1557/PROC-236-177

Download citation