Raman Studies of Stress-Induced Phase Transformations in Titania Films


Time-resolved micro-Raman spectroscopy is used to follow the amorphous to crystalline phase transformation in sol-gel deposited titania films induced thermally or through the action of applied hydrostatic pressure in a diamond anvil cell. Time-dependent phonon intensities intrinsic to the growing phase are related to the volume fraction of crystallite present at any time. The sigmoidally generated curves can be modeled in terms of modified Avrami ingrowth kinetics in which diffusion of the amorphous phase to the nucleation center is restricted by the morphology of the evolving phase. Phonon frequency and linewidth measurements during the course of the transformation probe changes in film stress and particle size which are used to understand the mechanistics of the transformation. Raman measurements also are used to derive a phase stability diagram for titania films.

This is a preview of subscription content, access via your institution.


  1. [1]

    G.J. Exarhos and Win. M. Risen, Jr., J. Am. Ceram. Soc. 57(9):401 (1974).

    CAS  Article  Google Scholar 

  2. [2]

    E.I. Kamitsos, M.A. Karakassides, A.P. Patsis, and G.D. Chryssikos, J. Non-Crys. Sol. 116:115 (1990).

    CAS  Article  Google Scholar 

  3. [3]

    G.J. Exarhos, Mat. Res. Soc. Proc. 48:461 (1985).

    CAS  Article  Google Scholar 

  4. [4]

    G.J. Exarhos, and P.L. Morse, Pro. Soc. Photo-Opt. Instrumen. Eng. 540:460 (1985).

    CAS  Google Scholar 

  5. [5]

    C.Y. She, and L.S. Hsu, in Laser Induced Damage in Optical Materials:1986, Ed. H.E. Bennett, A.H. Guenther, D. Milam, and B.E. Newnam, NBS Sp. Pub. 746:383 (1988).

    Google Scholar 

  6. [6]

    G.J. Exarhos, and D.M. Friedrich, Microbeam Anal. 23:147 (1987).

    Google Scholar 

  7. [7]

    L.S. Hsu, R. Rujkorakarn, J.R. Sites, and C.Y. She, J. Appl. Phys. 59(10):3475 (1986).

    CAS  Article  Google Scholar 

  8. [8]

    G.J. Exarhos, and M. Aloi, Thin Solid Films 193/194 42 (1990).

    Article  Google Scholar 

  9. [9]

    V.D. Das, and D. Karunakaran, J. Phys. Chem. Solids 46(5):551 (1985).

    CAS  Article  Google Scholar 

  10. [10]

    J.R. Sambles, J. Phys. Chem. Solids 46(5):525 (1985).

    CAS  Article  Google Scholar 

  11. [11]

    W.S. Frydrych, G.J. Exarhos, K.F. Ferris, and N.J. Hess, Mat. Res. Soc. Symp. Proc. 121:343 (1988).

    CAS  Article  Google Scholar 

  12. [12]

    L. Merrill, and W. Bassett, Rev. Sci. Instru. 45:290 (1974).

    Article  Google Scholar 

  13. [13]

    N.J. Hess, and G.J. Exarhos, High Press. Res. (2):57 (1989).

  14. [14]

    N.J. Hess, and D. Schiferl, J. Appl. Phys. 68(5):1953 (1990).

    CAS  Article  Google Scholar 

  15. [15]

    S.Z.D. Cheng, and B. Wunderlich, Macromol. 21:3327 (1988).

    CAS  Article  Google Scholar 

Download references


This work has been supported by the Materials Sciences Division Basic Energy Sciences, U.S. Department of Energy. Pacific Northwest Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76 RLO 1830.

Author information



Corresponding author

Correspondence to Gregory J. Exarhos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Exarhos, G.J., Hess, N.J. Raman Studies of Stress-Induced Phase Transformations in Titania Films. MRS Online Proceedings Library 230, 327–332 (1992). https://doi.org/10.1557/PROC-230-327

Download citation