Crystal Growth and Solute Trapping

Abstract

A simple model for solute trapping during rapid solidification is presented in terms of a single unknown parameter, the interfacial diffusivity Di. A transition from equilibrium segregation to complete solute trapping occurs over roughly an order of magnitude in growth speed, as the interface speed surpasses the maximum speed with which solute atoms can diffuse across the interface to remain ahead of the growing crystal. This diffusive speed is given by Di/λ, where λ is the interatomic spacing, and is typically of the order 10 meters per second. Comparison is made with experiment. The steady-state speed of a planar interface is predicted by calculating the free energy dissipated by irreversible processes at the interface and equating it to the available driving free energy. A solute drag term and an intrinsic interfacial mobility term are included in the dissipation calculations. Steady-state solutions are presented for Bi-doped Si during pulsed laser annealing.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J.C. Baker and J.W. Cahn, in Solidification (ASM, Metals Park, Ohio, 1970).

    Google Scholar 

  2. [2]

    C.W. White, S.R. Wilson, B.R. Appleton, and F.W. Young Jr., J. Appl. Phys. 51, 738 (1980).

    CAS  Article  Google Scholar 

  3. [3]

    J.C. Brice, The Growth of Crystals From the Melt (North-Holland, Amsterdam, 1965), pp. 63–7.

    Google Scholar 

  4. [4]

    R.N. Hall, J. Phys. Chem. 57, 836 (1953).

    CAS  Article  Google Scholar 

  5. [5]

    M. Hillert and B. Sundman, Acta Metall. 25, 11 (1977).

    CAS  Article  Google Scholar 

  6. [6]

    J.C. Baker, reported by J.W. Cahn, S.R. Coriell and W.J. Boettinger, in Laser and Electron Beam Processing of Materials, ed. C.W. White and P.S. Peercy (Academic, New York, 1980), pp. 89–103.

  7. [7]

    K.A. Jackson, G.H. Gilmer and H.J. Leamy, pp. 104–110 of [6].

  8. [8]

    G.H. Gilmer, Mat. Res. Soc. Symp. Proc. 13, 249 (1983).

    CAS  Article  Google Scholar 

  9. [9]

    R.F. Wood, Appl. Phys. Lett. 37, 302 (1980).

    CAS  Article  Google Scholar 

  10. [10]

    S.R. Coriell and D. Turnbull, Acta Metall. 30, 2135 (1982). See also references in [15].

    CAS  Article  Google Scholar 

  11. [11]

    J.Q. Broughton, G.H. Gilmer, and K.A. Jackson, Phys. Rev. Lett. 49, 1496 (1982).

    CAS  Article  Google Scholar 

  12. [12]

    K.A. Jackson, these proceedings.

  13. [13]

    M.J. Aziz, “Kinetics of Crystallization of B2O3 Under Pressure and Theory of Motion of the Crystal-Melt Interface at Wide Departures from Equilibrium”, Ph.D. thesis, Harvard University (University Microfilms International, Ann Arbor, Michigan, 1984).

    Google Scholar 

  14. [14]

    M.J. Aziz, J. Appl. Phys. 53, 1158 (1982).

    CAS  Article  Google Scholar 

  15. [15]

    M.J. Aziz, Appl. Phys. Lett. 43, 552 (1983).

    CAS  Article  Google Scholar 

  16. [16]

    M.J. Aziz, in Rapid Solidification Processing Principles and Technologies III, ed. R. Mehrabian (Nat. Bur. Standards, Gaithersburg MD, 1982), pp. 113–7.

  17. [17]

    P. Baeri, G. Foti, J.M. Poate, S.U. Campisano, and A.G. Cullis, Appl. Phys. Lett. 38, 800 (1981).

    CAS  Article  Google Scholar 

  18. [18]

    C.W. White, B.R. Appleton, B. Stritzker, D.M. Zehner, and S.R. Wilson, in Mat. Res. Soc. Symp. Proc. 1, 59 (1981).

    CAS  Article  Google Scholar 

  19. [19]

    P. Baeri, reported by C.W. White, D.M. Zehner, S.U. Campisano and A.G. Cullis, in Surface Modification and Alloying By Laser, Ion, and Electron Beams, ed. J.M. Poate, G. Foti and D.C. Jacobson (Plenum, New York, 1983), pp. 93–6.

  20. [20]

    Ref. [13], pp. 76–82.

  21. [21]

    J.W. Cahn, Acta Metall. 10, 789 (1962).

    CAS  Article  Google Scholar 

  22. [22]

    M. Hillert and B. Sundman, Acta Metall. 24, 731 (1976).

    CAS  Article  Google Scholar 

  23. [23]

    Ref. [13], chapter 5.

  24. [24]

    R.F. Wood and G.E. Giles, Phys. Rev. B 22, 2923 (1981).

    Article  Google Scholar 

  25. [25]

    P. Baeri, S.U. Campisano, G. Foti and E. Rimini, J. Appl. Phys. 50 788 (1979).

    CAS  Article  Google Scholar 

  26. [26]

    G.J. Galvin, J.W. Mayer and P.S. Peercy, these proceedings.

Download references

Acknowledgments

I am indebted to E. Nygren for assistance with the computer calculations; to J.L. Murray, J.W. Cahn, S.R. Coriell, W.J. Boettinger, and F. Spaepen for much helpful discussion; and to D. Turnbull for guidance. This work was supported in part by an Allied Corp. Fellowship Grant and by National Science Foundation Grant DMR-79-2 3597.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aziz, M.J. Crystal Growth and Solute Trapping. MRS Online Proceedings Library 23, 369–374 (1983). https://doi.org/10.1557/PROC-23-369

Download citation