Bacterial Production of Iron Sulfides


Iron sulfide production by bacteria can be classified as extracellular or intracellular. Extracellular iron sulfide production is mediated by anaerobic, dissimilatory sulfate-reducing bacteria which produce sulfide as a product of their respiration. Released sulfide reacts with iron (and other metals) in the extracellular environment producing a variety of iron sulfide minerals including “amorphous iron sulfide”, mackinawite, greigite, pyrrhotite, marcasite, and pyrite. The type of minerals formed is dependent upon pH, Eh, and other physical and chemical factors. Extracellular production of these minerals are examples of biologically-induced mineralization in which mineral formation occurs from chemical and/or physical changes in the surrounding environment by the organism.

Intracellular iron sulfides exist in bacteria in several forms including: iron-sulfur centers in iron-sulfur proteins, amorphous iron sulfide deposits, and crystalline iron sulfides. Iron-sulfur proteins are the most important class of electron transfer proteins and are found in all bacteria. Several different structural types of iron-sulfur centers are found in these proteins. Amorphous, intracellular iron sulfide “particles” have been reported in some dissimilatory sulfate-reducing bacteria when grown in high concentrations of iron. The “particles” are not separable from lysed cells and have no known function. Crystalline iron sulfide particles have recently been reported in magnetotactic bacteria collected from sulfide-rich aquatic habitats. Ferrimagnetic greigite (Fe3S4), pyrrhotite (Fe1-xS), and non-magnetic pyrite (FeS2) have been identified as the mineral phases of their magnetosomes. These particles have narrow size distributions and often have well-defined morphologies, characteristics associated with biologically controlled mineralization. Greigite and pyrrhotite can function in magnetotaxis but the function of pyrite is unknown. The production of crystalline iron sulfides by bacteria have significant biogeochemical and palaeomagnetic implications.

This is a preview of subscription content, access via your institution.


  1. 1.

    L.P. Miller, Contr. Boyce Thompson Inst. 16, 85 (1950).

    CAS  Google Scholar 

  2. 2.

    L.G.M. Baas Becking and D. Moore, Econ. Geol. 56, 259 (1961).

    Article  Google Scholar 

  3. 3.

    A.M. Freke and D. Tate, J. Biochem. Microbiol. Technol. Eng. 3, 29 (1961).

    CAS  Article  Google Scholar 

  4. 4.

    D.T. Rickard, Stockholm Contr. Geol. 20, 50 (1969); 20, 67 (1969).

    Google Scholar 

  5. 5.

    R.O. Hallberg, Neues Jahrb. Mineral. Monatsh. 11, 481 (1972).

    Google Scholar 

  6. 6.

    R.A. Berner, Science 137, 669 (1962); J. Geol. 72, 293 (1964); Econ. Geol. 64, 383 (1969).

    CAS  Article  Google Scholar 

  7. 7.

    L.G. Love and D.O. Zimmerman, Econ. Geol. 56, 873 (1961); F. Fabricus, Geol. Rundschau 51, 647 (1961).

    CAS  Article  Google Scholar 

  8. 8.

    H.A. Lowenstam, Science 211, 1126 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    D.R. Lovley, J.F. Stolz, G.L. Nord Jr., and E.J.P. Phillips, Nature 330, 252 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    M.N. Hughes and R.K. Poole, Metals in Micro-organisms (Chapman and Hall, New York, 1989) pp. 194–204.

    Google Scholar 

  11. 11.

    M.N. Hughes, The Inorganic Chemistry of Biological Processes, 2nd ed. (John Wiley and Sons, Ney York, 1981) pp. 154–162.

    Google Scholar 

  12. 12.

    D. Voet and J.G. Voet, Biochemistry (John Wiley and Sons, New York, 1990) p. 539.

    Google Scholar 

  13. 13.

    M.N. Hughes, in Comprehensive Coordination Chemistry, edited by G. Wilkinson, R.D. Gillard, and J. McCleverty (Pergamon Press, Oxford, UK, 1987) pp. 541–754.

  14. 14.

    M. Bruschi and F. Guerlesquin, FEMS Microbiol. Rev. 54, 155 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    D.C. Yoch and R.P. Carithers, Microbiol. Rev. 43, 384 (1979).

    CAS  Article  Google Scholar 

  16. 16.

    R.K. Thauer and P. Schonheit, in Iron-Sulfur Proteins, edited by T.G. Spiro (Wiley Interscience Publications, New York, 1982) pp. 332–341.

  17. 17.

    L.M. Siegel and P.S. Davis, J. Biol. Chem. 249, 1587 (1974).

    CAS  Article  Google Scholar 

  18. 18.

    H.E. Jones, P.A. Trudinger, L.A. Chambers, and N.A. Pyliotis, Z. allg. Mikrobiol. 16, 425 (1976).

    CAS  Article  Google Scholar 

  19. 19.

    B.L. Issatchenko, Bull. Jard. Inmp. Bot., St. Petersburg Vol. XII (1912); Int. Rev. ges. Hydrobiol. Hydrogr. 22, 99 (1929).

  20. 20.

    R.P. Blakemore, Science 190, 377 (1975); Ann. Rev. Microbiol. 36, 217 (1982).

    CAS  Article  Google Scholar 

  21. 21.

    D.L. Balkwill, D. Maratea, and R.P. Blakemore, J. Bacteriol. 141, 1399 (1980).

    CAS  Article  Google Scholar 

  22. 22.

    R.B. Frankel, Ann. Rev. Biophys. Bioeng. 13, 85 (1984).

    CAS  Article  Google Scholar 

  23. 23a.

    R.B. Frankel, R.P. Blakemore, and R.S. Wolfe, Science 203, 1355 (1979)

    CAS  Article  Google Scholar 

  24. 23b.

    K.M. Towe and T.T. Moench, Earth Planet. Sci. Lett. 52, 213 (1981)

    CAS  Article  Google Scholar 

  25. 23c.

    T. Matsuda, J. Endo, N. Osakube, A. Tonomura, and T. Arii, Nature 302, 411 (1983)

    CAS  Article  Google Scholar 

  26. 23d.

    S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. Roy. Soc. Lond. B 231, 469 (1987)

    Google Scholar 

  27. 23e.

    D.A. Bazylinski, R.B. Frankel, and H.W. Jannasch, Nature 333, 518 (1988)

    Article  Google Scholar 

  28. 23f.

    N.H.C. Sparks, S. Mann, D.A. Bazylinski, D.R. Lovley, H.W. Jannasch, and R.B. Frankel, Earth Planet. Sci. Lett. 98, 14 (1990).

    CAS  Article  Google Scholar 

  29. 24.

    M. Farina, H.G.P. Lins de Barros, D. Motta de Esquivel, and J. Danon, Biol. Cell. 48, 85 (1983).

    Google Scholar 

  30. 25.

    F.G. Rodgers, R.P. Blakemore, N.A. Blakemore, R.B. Frankel, D.A. Bazylinski, D. Maratea, and C. Rodgers, Arch. Microbiol. 154, 18 (1990).

    Article  Google Scholar 

  31. 26.

    D.A. Bazylinski, R.B. Frankel, A. Garratt-Reed, and S. Mann, in Iron Biominerals, edited by R.B. Frankel and R.P. Blakemore (Plenum Publishing Corporation, New York, 1990), in press.

  32. 27.

    M. Farina, D.M.S. Esquivel, and H.G.P. Lins de Barros, Nature 343, 246 (1990).

    Article  Google Scholar 

  33. 28.

    S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski, and H.W. Jannasch, Nature 343, 258 (1990).

    CAS  Article  Google Scholar 

  34. 29.

    B.R. Heywood, D.A. Bazylinski, A. Garratt-Reed, S. Mann, and R.B. Frankel, Naturwissenschaften, in press.

  35. 30.

    S. Mann, J. Inorg. Chem. 28, 363 (1986).

    CAS  Google Scholar 

  36. 31.

    Y.A. Gorby, T.J. Beveridge, and R.P. Blakemore, J. Bacteriol. 170, 834 (1988).

    CAS  Article  Google Scholar 

  37. 32.

    D. Maratea and R.P. Blakemore, Int. J. Syst. Bacteriol. 31, 452 (1981).

    Article  Google Scholar 

  38. 33a.

    K.M. Towe and T.T. Moench, Earth Planet Sci. Lett. 52, 213 (1981)

    CAS  Article  Google Scholar 

  39. 33b.

    S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. R. Soc. Lond. B 231, 469 (1987).

    Google Scholar 

  40. 34.

    S. Mann, in Magnetite Biomineralization and Magnetoreception in Organisms, edited by J.L. Kirschvink, D.S. Jones, and B.J. Macfadden (Plenum Publishing Corporation, New York, 1985), p. 311.

  41. 35.

    B.J. Skinner, R.C. Erd, and F.S. Grimaldi, Amer. Mineral. 49, 543 (1964).

    CAS  Google Scholar 

  42. 36.

    M.R. Spender, J.M.D. Coey, and A.H. Morrish, Can. J. Phys. 50, 2313, (1972).

    CAS  Article  Google Scholar 

  43. 37.

    R.J.P. Williams, Nature 343, 213 (1990).

    CAS  Article  Google Scholar 

  44. 38.

    H. Hartman, J. Mol. Evol. 4, 359 (1975); 38. G. Wächtershäuser, Microbiol. Rev., 52, 452 (1988); System. Appl. Microbiol., 10, 207 (1988); Proc. Nat. Acad. Sci. USA, 87, 200 (1990).

    CAS  Article  Google Scholar 

  45. 39.

    J.F. Stolz, D.R. Lovley, and S.E. Haggerty, J. Geophys. Res. 95, 4355 (1990).

    Article  Google Scholar 

  46. 40a.

    J. Jedwab, Soc. Belg. Geol. Bull. 76, 1 (1967)

    Google Scholar 

  47. 40b.

    C.I. Dell, Amer. Mineral. 57, 1303 (1972)

    CAS  Google Scholar 

  48. 40c.

    R.A. Berner, in The Black Sea- Geology, Chemistry, Biology, AAPG Memoir 20 (1974)

    Google Scholar 

  49. 40d.

    A. Demitrack, in Magnetite Biomineralization and Magnetoreception in Organisms, edited by J.L. Kirschvink, D.S. Jones, and B.F. Macfadden (Plenum Publishing Corporation, New York, 1985), p. 625

  50. 40e.

    J.W. Morse, F.J. Millero, J.C. Cornwall, and D. Rickard, Earth-Sci. Rev. 24, 1 (1987).

    CAS  Article  Google Scholar 

  51. 41.

    K.T. Swider and J.E. Mackin, Geochim. Cosmochim. Acta 53, 2311 (1989).

    CAS  Article  Google Scholar 

  52. 42.

    D.P. Kelly and A.P. Harrison, in Bergey’s Manual of Systematic Bacteriology, Vol.3, edited by J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (Williams and Wilkins, Baltimore, MD, 1989) p. 1842.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dennis A. Bazylinski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bazylinski, D.A. Bacterial Production of Iron Sulfides. MRS Online Proceedings Library 218, 81–91 (1990).

Download citation