Skip to main content
Log in

Bacterial Production of Iron Sulfides

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Iron sulfide production by bacteria can be classified as extracellular or intracellular. Extracellular iron sulfide production is mediated by anaerobic, dissimilatory sulfate-reducing bacteria which produce sulfide as a product of their respiration. Released sulfide reacts with iron (and other metals) in the extracellular environment producing a variety of iron sulfide minerals including “amorphous iron sulfide”, mackinawite, greigite, pyrrhotite, marcasite, and pyrite. The type of minerals formed is dependent upon pH, Eh, and other physical and chemical factors. Extracellular production of these minerals are examples of biologically-induced mineralization in which mineral formation occurs from chemical and/or physical changes in the surrounding environment by the organism.

Intracellular iron sulfides exist in bacteria in several forms including: iron-sulfur centers in iron-sulfur proteins, amorphous iron sulfide deposits, and crystalline iron sulfides. Iron-sulfur proteins are the most important class of electron transfer proteins and are found in all bacteria. Several different structural types of iron-sulfur centers are found in these proteins. Amorphous, intracellular iron sulfide “particles” have been reported in some dissimilatory sulfate-reducing bacteria when grown in high concentrations of iron. The “particles” are not separable from lysed cells and have no known function. Crystalline iron sulfide particles have recently been reported in magnetotactic bacteria collected from sulfide-rich aquatic habitats. Ferrimagnetic greigite (Fe3S4), pyrrhotite (Fe1-xS), and non-magnetic pyrite (FeS2) have been identified as the mineral phases of their magnetosomes. These particles have narrow size distributions and often have well-defined morphologies, characteristics associated with biologically controlled mineralization. Greigite and pyrrhotite can function in magnetotaxis but the function of pyrite is unknown. The production of crystalline iron sulfides by bacteria have significant biogeochemical and palaeomagnetic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.P. Miller, Contr. Boyce Thompson Inst. 16, 85 (1950).

    CAS  Google Scholar 

  2. L.G.M. Baas Becking and D. Moore, Econ. Geol. 56, 259 (1961).

    Article  Google Scholar 

  3. A.M. Freke and D. Tate, J. Biochem. Microbiol. Technol. Eng. 3, 29 (1961).

    Article  CAS  Google Scholar 

  4. D.T. Rickard, Stockholm Contr. Geol. 20, 50 (1969); 20, 67 (1969).

    Google Scholar 

  5. R.O. Hallberg, Neues Jahrb. Mineral. Monatsh. 11, 481 (1972).

    Google Scholar 

  6. R.A. Berner, Science 137, 669 (1962); J. Geol. 72, 293 (1964); Econ. Geol. 64, 383 (1969).

    Article  CAS  Google Scholar 

  7. L.G. Love and D.O. Zimmerman, Econ. Geol. 56, 873 (1961); F. Fabricus, Geol. Rundschau 51, 647 (1961).

    Article  CAS  Google Scholar 

  8. H.A. Lowenstam, Science 211, 1126 (1981).

    Article  CAS  Google Scholar 

  9. D.R. Lovley, J.F. Stolz, G.L. Nord Jr., and E.J.P. Phillips, Nature 330, 252 (1987).

    Article  CAS  Google Scholar 

  10. M.N. Hughes and R.K. Poole, Metals in Micro-organisms (Chapman and Hall, New York, 1989) pp. 194–204.

    Google Scholar 

  11. M.N. Hughes, The Inorganic Chemistry of Biological Processes, 2nd ed. (John Wiley and Sons, Ney York, 1981) pp. 154–162.

    Google Scholar 

  12. D. Voet and J.G. Voet, Biochemistry (John Wiley and Sons, New York, 1990) p. 539.

    Google Scholar 

  13. M.N. Hughes, in Comprehensive Coordination Chemistry, edited by G. Wilkinson, R.D. Gillard, and J. McCleverty (Pergamon Press, Oxford, UK, 1987) pp. 541–754.

  14. M. Bruschi and F. Guerlesquin, FEMS Microbiol. Rev. 54, 155 (1988).

    Article  CAS  Google Scholar 

  15. D.C. Yoch and R.P. Carithers, Microbiol. Rev. 43, 384 (1979).

    Article  CAS  Google Scholar 

  16. R.K. Thauer and P. Schonheit, in Iron-Sulfur Proteins, edited by T.G. Spiro (Wiley Interscience Publications, New York, 1982) pp. 332–341.

  17. L.M. Siegel and P.S. Davis, J. Biol. Chem. 249, 1587 (1974).

    Article  CAS  Google Scholar 

  18. H.E. Jones, P.A. Trudinger, L.A. Chambers, and N.A. Pyliotis, Z. allg. Mikrobiol. 16, 425 (1976).

    Article  CAS  Google Scholar 

  19. B.L. Issatchenko, Bull. Jard. Inmp. Bot., St. Petersburg Vol. XII (1912); Int. Rev. ges. Hydrobiol. Hydrogr. 22, 99 (1929).

  20. R.P. Blakemore, Science 190, 377 (1975); Ann. Rev. Microbiol. 36, 217 (1982).

    Article  CAS  Google Scholar 

  21. D.L. Balkwill, D. Maratea, and R.P. Blakemore, J. Bacteriol. 141, 1399 (1980).

    Article  CAS  Google Scholar 

  22. R.B. Frankel, Ann. Rev. Biophys. Bioeng. 13, 85 (1984).

    Article  CAS  Google Scholar 

  23. R.B. Frankel, R.P. Blakemore, and R.S. Wolfe, Science 203, 1355 (1979)

    Article  CAS  Google Scholar 

  24. K.M. Towe and T.T. Moench, Earth Planet. Sci. Lett. 52, 213 (1981)

    Article  CAS  Google Scholar 

  25. T. Matsuda, J. Endo, N. Osakube, A. Tonomura, and T. Arii, Nature 302, 411 (1983)

    Article  CAS  Google Scholar 

  26. S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. Roy. Soc. Lond. B 231, 469 (1987)

    Google Scholar 

  27. D.A. Bazylinski, R.B. Frankel, and H.W. Jannasch, Nature 333, 518 (1988)

    Article  Google Scholar 

  28. N.H.C. Sparks, S. Mann, D.A. Bazylinski, D.R. Lovley, H.W. Jannasch, and R.B. Frankel, Earth Planet. Sci. Lett. 98, 14 (1990).

    Article  CAS  Google Scholar 

  29. M. Farina, H.G.P. Lins de Barros, D. Motta de Esquivel, and J. Danon, Biol. Cell. 48, 85 (1983).

    Google Scholar 

  30. F.G. Rodgers, R.P. Blakemore, N.A. Blakemore, R.B. Frankel, D.A. Bazylinski, D. Maratea, and C. Rodgers, Arch. Microbiol. 154, 18 (1990).

    Article  Google Scholar 

  31. D.A. Bazylinski, R.B. Frankel, A. Garratt-Reed, and S. Mann, in Iron Biominerals, edited by R.B. Frankel and R.P. Blakemore (Plenum Publishing Corporation, New York, 1990), in press.

  32. M. Farina, D.M.S. Esquivel, and H.G.P. Lins de Barros, Nature 343, 246 (1990).

    Article  Google Scholar 

  33. S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski, and H.W. Jannasch, Nature 343, 258 (1990).

    Article  CAS  Google Scholar 

  34. B.R. Heywood, D.A. Bazylinski, A. Garratt-Reed, S. Mann, and R.B. Frankel, Naturwissenschaften, in press.

  35. S. Mann, J. Inorg. Chem. 28, 363 (1986).

    CAS  Google Scholar 

  36. Y.A. Gorby, T.J. Beveridge, and R.P. Blakemore, J. Bacteriol. 170, 834 (1988).

    Article  CAS  Google Scholar 

  37. D. Maratea and R.P. Blakemore, Int. J. Syst. Bacteriol. 31, 452 (1981).

    Article  Google Scholar 

  38. K.M. Towe and T.T. Moench, Earth Planet Sci. Lett. 52, 213 (1981)

    Article  CAS  Google Scholar 

  39. S. Mann, N.H.C. Sparks, and R.P. Blakemore, Proc. R. Soc. Lond. B 231, 469 (1987).

    Google Scholar 

  40. S. Mann, in Magnetite Biomineralization and Magnetoreception in Organisms, edited by J.L. Kirschvink, D.S. Jones, and B.J. Macfadden (Plenum Publishing Corporation, New York, 1985), p. 311.

  41. B.J. Skinner, R.C. Erd, and F.S. Grimaldi, Amer. Mineral. 49, 543 (1964).

    CAS  Google Scholar 

  42. M.R. Spender, J.M.D. Coey, and A.H. Morrish, Can. J. Phys. 50, 2313, (1972).

    Article  CAS  Google Scholar 

  43. R.J.P. Williams, Nature 343, 213 (1990).

    Article  CAS  Google Scholar 

  44. H. Hartman, J. Mol. Evol. 4, 359 (1975); 38. G. Wächtershäuser, Microbiol. Rev., 52, 452 (1988); System. Appl. Microbiol., 10, 207 (1988); Proc. Nat. Acad. Sci. USA, 87, 200 (1990).

    Article  CAS  Google Scholar 

  45. J.F. Stolz, D.R. Lovley, and S.E. Haggerty, J. Geophys. Res. 95, 4355 (1990).

    Article  Google Scholar 

  46. J. Jedwab, Soc. Belg. Geol. Bull. 76, 1 (1967)

    Google Scholar 

  47. C.I. Dell, Amer. Mineral. 57, 1303 (1972)

    CAS  Google Scholar 

  48. R.A. Berner, in The Black Sea- Geology, Chemistry, Biology, AAPG Memoir 20 (1974)

    Google Scholar 

  49. A. Demitrack, in Magnetite Biomineralization and Magnetoreception in Organisms, edited by J.L. Kirschvink, D.S. Jones, and B.F. Macfadden (Plenum Publishing Corporation, New York, 1985), p. 625

  50. J.W. Morse, F.J. Millero, J.C. Cornwall, and D. Rickard, Earth-Sci. Rev. 24, 1 (1987).

    Article  CAS  Google Scholar 

  51. K.T. Swider and J.E. Mackin, Geochim. Cosmochim. Acta 53, 2311 (1989).

    Article  CAS  Google Scholar 

  52. D.P. Kelly and A.P. Harrison, in Bergey’s Manual of Systematic Bacteriology, Vol.3, edited by J.T. Staley, M.P. Bryant, N. Pfennig, and J.G. Holt (Williams and Wilkins, Baltimore, MD, 1989) p. 1842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazylinski, D.A. Bacterial Production of Iron Sulfides. MRS Online Proceedings Library 218, 81–91 (1990). https://doi.org/10.1557/PROC-218-81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-218-81

Navigation