Synthesis of Ultrafine, Multicomponent Particles Using Phospholipid Vesicles


Because of their unique properties of self-assembly and selective ion permeability across the lipid bilayers, phospholipid vesicles were used as reaction vessels for the synthesis of ultrafine, multicomponent ceramic particles containing Y, Ba, Cu, and Ag. Chemical inhomogeneities in the system were limited to the individual particle size (< 50 nun), which was a considerable improvement over particles prepared using bulk precipitation routes. The consistent barium deficiency was a serious problem that arose when attempting to control the stoichiometry of the multicomponent system. Our experimental evidence suggests that chemical interactions between the barium cations and the vesicleforming phospholipid may inhibit the precipitation of barium salts. In a parallel study, we performed consolidation studies on vesicle-precipitated Ag2O particles before and after the removal of the phospholipid molecules. Particle packing was greatly improved in the surfactant coated particles. This demonstrates the multifunctionality of this biomimetic system in which the vesicle membrane simultaneously acts as: (i) a reaction cell for particle precipitation, (ii) an ion selective membrane that affects precipitation kinetics, (iii) a barrier to prevent spontaneous agglomeration of the ultrafine particles, and (iv) a lubricant/dispersantth atfacilitatesp article rearrangementd uring consolidation.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. P. Andres et al., J. Mater. Res., 4 [3] 704 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    R. W. Seigel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and, R. Gronsky, J. Mater. Res., 3 [6] 1370 (1988).

    Google Scholar 

  3. 3.

    J. Karck, R. Birringer, and H. Gleiter, Nature, 330 [10] 556 (1987).

    Article  Google Scholar 

  4. 4.

    R. W. Seigel, S. Ramasamy, H. Hahn, Z. Li, T. Lu, and R. Gronsky, J, Mater. Res., 3 [6] 1369 (1988).

    Google Scholar 

  5. 5.

    J. H. Fendler, Chem. Rev., 87, 877 (1987).

    CAS  Article  Google Scholar 

  6. 6.

    B. J. Tarasevich, J. Liu, M. Sarikaya, and I. A. Aksay, in Better Ceramics Through Chemistry III, MRS Symp. Proc., Vol.121, edited by C. J. Brinker, D. E. Clark, and D. R. Ulrich (Materials Research Society, Pittsburg, Pennsylvania, 1988), p. 225.

    CAS  Google Scholar 

  7. 7.

    R. B. Frankel and R. P. Blakemore, Phil. Trans. R. Soc. Lond., B304, 567 (1984).

    Google Scholar 

  8. 8.

    S. Mann and R. J. P. Williams, J. Chem. Soc. Dalton Trans., 311 (1983).

  9. 9.

    S. Mann and J. P. Hannington, J. Colloid Interface Sci., 122 [2] 326 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    S. M. Johnson and A. D. Bangham, Biochim. Biophys. Acta., 193, 82 (1969).

    CAS  Article  Google Scholar 

  11. 11.

    H. O. Hauser, M. C. Phillips, and M. Stubbs, Nature, 239, 342 (1972).

    CAS  Article  Google Scholar 

  12. 12.

    D. Papahadjopoulos, Biochim. Biophys. Acta., 241, 254 (1971).

    CAS  Article  Google Scholar 

  13. 13.

    A. D. Bangham, M. M. Standish, and J. C. Watkins, J. Molec. Biol., 13, 238 (1965).

    CAS  Article  Google Scholar 

  14. 14.

    S. Mann, J. P. Hannington, and R. J. P. Williams, Nature, 324, 565 (1986).

    CAS  Article  Google Scholar 

  15. 15.

    J. H. Fendler, Membrane Mimetic Chemistry, (Wiley, New York, 1982), p. 113.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, H., Graff, G.L., Hyde, M. et al. Synthesis of Ultrafine, Multicomponent Particles Using Phospholipid Vesicles. MRS Online Proceedings Library 218, 115–121 (1990).

Download citation