Skip to main content
Log in

Comparison Between Homo-And Hetero-Epitaxial Layers by Photoreflectance Spectroscopy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

MOCVD grown GaAs and InP epitaxial layers have been studied using photoreflectance spectroscopy. Homogeneous and heterogeneous structures were employed to investigate the influence of the mismatch induced strain and dislocations. All the tested spectra contained a sharp peak related to the fundamental absorption edge and a pronounced Franz-Keldysh oscillation. The data analysis revealed a consistent difference in bandgap, temperature coefficients of the bandgap, and surface electric field, in the order of the degree of mismatch. For GaAs/GaAs and GaAs/Si samples, the bandgaps derived from the three point method were 1.436 and 1.324eV, respectively. Values of 1.334, 1.325, and 1.294 eV for the bandgap were found for InP/InP, InP/GaAs, and InP/GaAs/Si, respectively. For GaAs epitaxial layers, the intensity of the surface field bore a ratio of 1.18:1 between GaAs and Si substrates. For InP epitaxial layers, the ratio was 1.23:1.12:1 in the sequence of InP, GaAs, and GaAs/Si substrates. Such a measure must be related to the mismatch in the heteroepitaxy structures. A shoulderlike peak, 18-23 meV below the gap-energy peak (Eo), was found for GaAs samples, which could be impurity related. A broad shoulder-like peak 30 meV below the fundamental absorption edge was also observed only for InP/GaAs/Si and hence attributed to some shallow defect levels induced by antiphase disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C.C. Fan and J.M. Poate eds., "Heteroepitaxy on Silicon", MRS Symposia Proceeding, 67, Pittsburgh (1986).

  2. J.C.C. Fan, J.M. Philips and B.Y. Tsaur eds., "Heteroepitaxy on Silicon II", MRS Symposia Proceeding, 91, Pittsburgh (1987).

  3. A. Yamamoto, M. Uchida, and M. Yamaguchi, Optoelectron. Dev. and Tech., 1, 41 (1986).

    CAS  Google Scholar 

  4. M.K. Lee, K.C. Huang, D.S. Wuu, H.H. Tung and K.Y. Yu, Appl. Phys. Lett., 52, 880 (1988).

    Article  CAS  Google Scholar 

  5. C.J. Keavney, S.M. Vernon, V.E. Haven, S.J. Wojtczuk and M.M. Al-Jassim, Appl. Phys. Lett., 54, 1139 (1989).

    Article  CAS  Google Scholar 

  6. M. Sugo, M. Yamaguchi and M.M. Al-Jassim, J. Crystal Growth, 99, 365 (1990).

    Article  CAS  Google Scholar 

  7. N. Bottka, D.K. Gaskill, R.S. Sillmon, R. Henry and R. Glosser, J. Electron. Mater., 17, 161 (1988).

    Article  CAS  Google Scholar 

  8. F.H. Pollak and H. Shen, J. Electron. Mater., 19, 399 (1990).

    Article  CAS  Google Scholar 

  9. N. Bottka, D.K. Gaskill, R.J.M. Griffiths, R.R. Bradley. T.B. Joyce, C. Ito and D. McIntyre, J. Crystal Growth, 93, 481 (1988).

    Article  CAS  Google Scholar 

  10. A. Dimoulas, P. Tzanetakis, K. Georgakilas, O.J. Glembocki and A. Christou, J. Appl. Phys., 67, 4389 (1990).

    Article  CAS  Google Scholar 

  11. P. Panayotatos, A. Georgakilas, J-L Mourrain and A. Christou, Presented at the Int. Conf. on Physical Concepts of Material for Novel Optoelectronic Device Applications, SPIE- The International Society for Optical Engineering, Eurogress Aachen, FRG, Oct. 28 - Nov. 2, (1990).

  12. J.L. Shay, Phys. Rev. B2, 803 (1970).

    Article  Google Scholar 

  13. D.E. Aspnes and J.E. Rowe, Phys. Rev. Lett., 27, 188 (1971).

    Article  CAS  Google Scholar 

  14. H. Okamato, T. Oh’hama, Y. Kadota and Y. Ohmachi, Jpn. J. Appl. Phys., 29, 1052 (1990).

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge S.M. Vernon at Spire Corp. for providing the samples.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, K.L., Shi, Z.Q. & Anderson, W. Comparison Between Homo-And Hetero-Epitaxial Layers by Photoreflectance Spectroscopy. MRS Online Proceedings Library 209, 713–717 (1990). https://doi.org/10.1557/PROC-209-713

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-209-713

Navigation