Simulating Vacancy, Impurity And Electronic Defect States In Mgo, Lici And La2Cuo4 Using Quantum Cluster And Classical Lattice Simulation Techniques In A Consistent Manner.

Abstract

We calculated defect energies by using a Hartree-Fock method to model an inner region that includes the defect site and oneor two shells of lattice ions. This is surrounded by an embedding region that is described by a classical Mott-Littleton calculation. Electrostatic multipole consistency between the two jegions is maintained throughout.

The results of defect calculations on MgO are examined as a function of basis set. We find that a sophisticated basis set is required before a reliable defect formation energy can be guaranteed. This experience has allowed us to develop a new model for the off-center relaxation of the exciton in LiC1. These calculations have required the use of pseudo potential cores for anions and floating functions to model the diffuse electron. Lastly, we report on recent calculations concerning the stability of hole states in La2CuO4. We find considerable delocalization of the hole over both the Cu2+ ions and the O2- ions that form the Cu-O planes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. H. Harding, A. H. Harker, P. B. Keegstra, R. Pandey, J. M. Vail and C. Woodward, Physica B 131, 151 (1985).

    CAS  Article  Google Scholar 

  2. 2.

    R. Pandey and J. M. Vail, J. Phys.: Condensed Matter 1, 2801 (1989).

    CAS  Google Scholar 

  3. 3.

    J. Meng, A. B. Kunz and C. Woodward, Phys. Rev. B, 38, 10870 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    A. L. Shluger, R. W. Grimes and C. R. A. Catlow, J. Phys.: Condensed Matter in press.

  5. 5.

    R. W. Grimes, C. R. A. Catlow and A. M. Stoneham, J. Phys.: Condensed Matter 1, 7367 (1989).

    CAS  Google Scholar 

  6. 6.

    M. R. Press and D. E. Ellis, Phys. Rev. B. 35, 4438 (1987).

    CAS  Article  Google Scholar 

  7. 7.

    C. Pisani, R. Dovesi and C. Roetti, Hartree-Fock Ab initio Treatment of Crystalline Systems Lecture Notes in Chemistry 48, (Springer Verlag, 1988).

  8. 8.

    G. R. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B 26, 4199 (1982).

    CAS  Article  Google Scholar 

  9. 9.

    N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 (1938).

    CAS  Article  Google Scholar 

  10. 10.

    Computer Simulation of Defects in Polar Solids; Special issue of J.Chem.Soc. Faraday Trans. 85[5] (1989).

  11. 11.

    The practical calculation of Interionic Potentials in Solids; Special issues of Molecular Simulation 4[5] and 5[2] (1990).

  12. 12.

    B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

    CAS  Article  Google Scholar 

  13. 13.

    B. J. Wuensch, in Mass Transport in Solids, edited by F. Beniere and C. R. A. Catlow (Plenum Press, New York, 1983).

  14. 14.

    S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    CAS  Article  Google Scholar 

  15. 15.

    J. H. van Lenthe, J. G. C. M. van Duijneveldt van de Rijdt and F. B. van} Duijneveldt, in Ab initio Methods in Ouantum Chemistry II. edited by K. P. Lawley (Wiley, New York, 1987) p 520.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin W. Grimes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grimes, R.W., Catlow, C.R.A., Shluger, A.L. et al. Simulating Vacancy, Impurity And Electronic Defect States In Mgo, Lici And La2Cuo4 Using Quantum Cluster And Classical Lattice Simulation Techniques In A Consistent Manner.. MRS Online Proceedings Library 209, 257–262 (1990). https://doi.org/10.1557/PROC-209-257

Download citation