Molecular Dynamics Simulations of Steps at Crystal Surfaces.

Abstract

The growth of semiconductor crystals by molecular beam epitaxy often involves the motion of distinct steps, which are the boundaries of incomplete atomic layers. We review some of the crystal growth mechanisms based on step generation and motion. Ising models have been widely used to study equilibrium faceting and crystal growth. We discuss more general models of steps which are based on molecular dynamics calculations of atomic motion and empirical interatomic potentials. These models include the possibility of surface and step reconstructions, and here we discuss their influence on the step energy and motion. We find that certain types of steps have a structure with drastically reduced energy compared to unreconstructed steps. We have also examined the effect of stress resulting from misfit in epitaxial systems. We find that 1% misfit can completely change the nature of a step, since its excess energy may change sign from negative to positive, or vice versa. Simulations of molecular beam epitaxy give direct information on the conditions under which step growth mechanisms play a role.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    P. E. Wierenga, J. A. Kubby and J. E. Griffith, Phys. Rev. Lett. 59, 2169 (1987)

    CAS  Article  Google Scholar 

  2. (2)

    M. G. Lagally, Y. -W. Mo, R. Kariotis, B. S. Swartzentruber and M. B. Webb, in: “Kinetics of Growth and Ordering at Surfaces”, M. G. Lagally, ed., (Plenum, New York, 1990), p. 145.

  3. (3)

    M. Hanbucken, M. Futamoto and J. A. Venables, Surface Sci. 147, 433 (1984).

    Article  Google Scholar 

  4. (4)

    M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).

    CAS  Article  Google Scholar 

  5. (5)

    A. A. Chernov, in: “Modem Crystallography III”, (Springer, Berlin, 1984).

    Google Scholar 

  6. (6)

    F. H. Stillinger and T. Weber, Phys. Rev. B 31, 5262 (1985).

    CAS  Article  Google Scholar 

  7. (7)

    R. W. Hockney and J. W. Eastwood, in: “Computer Simulation using Particles”, (McGraw-Hill, New York, 1981).

    Google Scholar 

  8. (8)

    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986), and J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    CAS  Google Scholar 

  9. (9)

    M. Schneider, I. K. Schuller and A. Rahman, Phys. Rev. B 36, 1340 (1987).

    CAS  Article  Google Scholar 

  10. (10)

    R. Biswas, G. S. Grest and C. M. Soukoulis, Phys. Rev. B 38, 8154 (1988).

    CAS  Article  Google Scholar 

  11. (11)

    D. Srivastava, B. J. Garrison and D. W. Brenner, Phys. Rev. Lett. 63, 302 (1989).

    CAS  Article  Google Scholar 

  12. (12)

    G. H. Gilmer, M. H. Grabow and A. F. Bakker, Materials Science and Engineering, B6, 101 (1990).

    Article  Google Scholar 

  13. (13)

    A. F. Bakker, G. H. Gilmer, M. H. Grabow and K. Thompson, J. Comp. Phys. 90, 313 (1990).

    CAS  Article  Google Scholar 

  14. (14)

    T. W. Poon, S. Yip, P. S. Ho, F. F. Abraham, Phys. Rev. Lett. 65, 2161 (1990).

    CAS  Article  Google Scholar 

  15. (15)

    O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopoulos, Phys. Rev. Lett. 61, 1973 (1988).

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge helpful discussions with M. H. Grabow, J. E. Griffith and C. M. Roland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. H. Gilmer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gilmer, G.H., Bakker, A.F. Molecular Dynamics Simulations of Steps at Crystal Surfaces.. MRS Online Proceedings Library 209, 135–145 (1990). https://doi.org/10.1557/PROC-209-135

Download citation