Ion-Implantation Studies of Graphite

Abstract

Ion implantation of highly oriented pyrolytic graphite (HOPG) is studied using various characterization techniques, including Raman spectroscopy and Secondary Ion Mass Spectroscopy (SIMS). Particular attention is given to the annealing of the implantation-induced lattice damage using both hot substrate implantation (200 < T1 < 1000°C) and post-implantation annealing. The Raman spectra provide detailed information on the implantation-induced structural disorder by analysis of the disorder-induced and Raman-allowed features in the first- and second-order spectra. SIMS measurements show that the implanted profile is essentially the same for hot substrate and room temperature implantation for the case of HOPG. It is shown that implantation at elevated temperatures prevents amorphization more effectively than implantation at room temperature and subsequent annealing at the same elevated temperature. The annealing results show that fundamentally different defects are created during room temperature and hot substrate implantation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B.S. Elman, M.S. Dresselhaus, G. Dresselhaus, E.W. Maby and H. Mazurek, Phys. Rev. B 24, 1027 (1981).

    CAS  Article  Google Scholar 

  2. 2.

    B.S. Elman, M. Shayegan, M.S. Dresselhaus, H. Mazuzek and G. Dresselhaus, Phys. Rev. B 25, 4412 (1982).

    Article  Google Scholar 

  3. 3.

    B.S. Elman, H. Mazurek, M.S. Dresselhaus and G. Dresselhaus, Metastable Materials Formation by Ion Implantation, ed. S. Thomas Picraux and W.J. Choyke, North-Holland, Materials Research Society Symposia Proceedings, Vol. 7, p. 425 (1982).

  4. 4.

    B.S. Elman, G. Dresselhaus and M. Shayegan, Extended Abstracts of the 15th Biennial Conference on Carbon, University of Penn., p. 24 (1981).

  5. 5.

    R. Kalish, M. Deicher, E. Recknagel and Th. Wichet, J. Appl. Phys. 50, 6870 (1979).

    CAS  Article  Google Scholar 

  6. 6.

    V.S. Vavilov, Rad. Effects 37, 229 (1978).

    CAS  Article  Google Scholar 

  7. 7.

    E.W. Maby, C.W. Magee and J.H. Moorewood, Appl. Phys. Lett. 39, 157 (1981).

    CAS  Article  Google Scholar 

  8. 8.

    Y.H. Lee, P.R. Brosious and J.W. Corbett, Phys. Stat. Sol. (a) 50, 237 (1978); G. Braunstein and R. Kalish, Appl. Phys. Lett. 38, 416 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    T. Tsuchimoto and T. Tokuyama, Proceedings of International Conference on Ion Implantation in Semiconductors, eds. Fred H. Eisen and Lewis T. Chadderton, Thousand Oaks, CA, p. 237 (1970); R.L. Minear, D.G. Nelson and J.F. Gibbons, J. Appl. Phys. 43, 3468 (1972).

  10. 10.

    J.C. Bourgoin and J.W. Corbett, Rad. Effects 36, 157 (1978).

    CAS  Article  Google Scholar 

  11. 11.

    G. Braunstein, private communication.

  12. 12.

    N.G.E. Johansson, D. Sigurd and K. Bjorkqvist, Proceedings of International Conference on Ion Implantation in Semiconductors, eds. Fred H. Eisen and Lewis T. Chadderton, Thousand Oaks, CA, p. 225 (1970).

  13. 13.

    W. Primak, J. Appl. Phys. 47, 2776 (1976).

    CAS  Article  Google Scholar 

  14. 14.

    B.S. Elman, M.S. Dresselhaus, C. Nicolini and T.C. Chieu (to be published).

  15. 15.

    F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    CAS  Article  Google Scholar 

  16. 16.

    G. Braunstein and R. Kalish, Abstracts of the International Conference on Ion Beam Modification of Materials, Grenoble (1982).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. S. Elman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elman, B.S., Hom, M., Maby, E.W. et al. Ion-Implantation Studies of Graphite. MRS Online Proceedings Library 20, 341 (1982). https://doi.org/10.1557/PROC-20-341

Download citation